基于插值和可满足性求解的大布尔函数双分解

Ruei-Rung Lee, J. H. Jiang, W. Hung
{"title":"基于插值和可满足性求解的大布尔函数双分解","authors":"Ruei-Rung Lee, J. H. Jiang, W. Hung","doi":"10.1145/1391469.1391634","DOIUrl":null,"url":null,"abstract":"Boolean function bi-decomposition is a fundamental operation in logic synthesis. A function f(X) is bi-decomposable under a variable partition X<sub>A</sub>, X<sub>B</sub>, X<sub>C</sub> on X if it can be written as h(f<sub>A</sub>(X<sub>A</sub>, X<sub>C</sub>), f<sub>B</sub>(X<sub>B</sub>, X<sub>C</sub>)) for some functions h, Ja, and /#. The quality of a bi-decomposition is mainly determined by its variable partition. A preferred decomposition is disjoint, i.e. X<sub>C</sub> = Oslash, and balanced, i.e. |X<sub>A</sub>| ap |X<sub>B</sub>|. Finding such a good decomposition reduces communication and circuit complexity, and yields simple physical design solutions. Prior BDD-based methods may not be scalable to decompose large functions due to the memory explosion problem. Also as decomposability is checked under a fixed variable partition, searching a good or feasible partition may run through costly enumeration that requires separate and independent decomposability checkings. This paper proposes a solution to these difficulties using interpolation and incremental SAT solving. Preliminary experimental results show that the capacity of bi-decomposition can be scaled up substantially to handle large designs.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Bi-decomposing large Boolean functions via interpolation and satisfiability solving\",\"authors\":\"Ruei-Rung Lee, J. H. Jiang, W. Hung\",\"doi\":\"10.1145/1391469.1391634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boolean function bi-decomposition is a fundamental operation in logic synthesis. A function f(X) is bi-decomposable under a variable partition X<sub>A</sub>, X<sub>B</sub>, X<sub>C</sub> on X if it can be written as h(f<sub>A</sub>(X<sub>A</sub>, X<sub>C</sub>), f<sub>B</sub>(X<sub>B</sub>, X<sub>C</sub>)) for some functions h, Ja, and /#. The quality of a bi-decomposition is mainly determined by its variable partition. A preferred decomposition is disjoint, i.e. X<sub>C</sub> = Oslash, and balanced, i.e. |X<sub>A</sub>| ap |X<sub>B</sub>|. Finding such a good decomposition reduces communication and circuit complexity, and yields simple physical design solutions. Prior BDD-based methods may not be scalable to decompose large functions due to the memory explosion problem. Also as decomposability is checked under a fixed variable partition, searching a good or feasible partition may run through costly enumeration that requires separate and independent decomposability checkings. This paper proposes a solution to these difficulties using interpolation and incremental SAT solving. Preliminary experimental results show that the capacity of bi-decomposition can be scaled up substantially to handle large designs.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

布尔函数双分解是逻辑综合中的一项基本运算。如果函数f(X)对于某些函数h, Ja,和/#可以写成h(fA(XA, XC), fB(XB, XC)),那么函数f(X)在X上的变量划分XA, XB, XC下是可双分解的。双分解的质量主要取决于它的变量划分。优选的分解是不相交的,即XC = Oslash,和平衡的,即|XA| ap |XB|。找到这样一个好的分解方法可以降低通信和电路的复杂性,并产生简单的物理设计解决方案。由于内存爆炸问题,以前基于bdd的方法可能无法扩展到分解大型函数。同样,由于在固定变量分区下检查可分解性,因此搜索一个好的或可行的分区可能需要通过昂贵的枚举,这需要单独和独立的可分解性检查。本文提出了一种利用插值和增量SAT求解来解决这些困难的方法。初步的实验结果表明,双分解的能力可以大大扩大,以处理大型设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-decomposing large Boolean functions via interpolation and satisfiability solving
Boolean function bi-decomposition is a fundamental operation in logic synthesis. A function f(X) is bi-decomposable under a variable partition XA, XB, XC on X if it can be written as h(fA(XA, XC), fB(XB, XC)) for some functions h, Ja, and /#. The quality of a bi-decomposition is mainly determined by its variable partition. A preferred decomposition is disjoint, i.e. XC = Oslash, and balanced, i.e. |XA| ap |XB|. Finding such a good decomposition reduces communication and circuit complexity, and yields simple physical design solutions. Prior BDD-based methods may not be scalable to decompose large functions due to the memory explosion problem. Also as decomposability is checked under a fixed variable partition, searching a good or feasible partition may run through costly enumeration that requires separate and independent decomposability checkings. This paper proposes a solution to these difficulties using interpolation and incremental SAT solving. Preliminary experimental results show that the capacity of bi-decomposition can be scaled up substantially to handle large designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信