{"title":"四值逻辑函数的里德-穆勒-傅立叶与伽罗瓦域表示","authors":"R. Stankovic, D. Jankovic, C. Moraga","doi":"10.1109/ISMVL.1998.679340","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Reed-Muller-Fourier representations of four-valued functions over the ring of integers modulo 4 and compare them with the Galois field representations over GF(4). It is reported that on the average Reed-Muller-Fourier representations exhibit a lower complexity than those based on Galois field polynomials.","PeriodicalId":377860,"journal":{"name":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","volume":"18 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reed-Muller-Fourier versus Galois field representations of four-valued logic functions\",\"authors\":\"R. Stankovic, D. Jankovic, C. Moraga\",\"doi\":\"10.1109/ISMVL.1998.679340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce Reed-Muller-Fourier representations of four-valued functions over the ring of integers modulo 4 and compare them with the Galois field representations over GF(4). It is reported that on the average Reed-Muller-Fourier representations exhibit a lower complexity than those based on Galois field polynomials.\",\"PeriodicalId\":377860,\"journal\":{\"name\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"volume\":\"18 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1998.679340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1998 28th IEEE International Symposium on Multiple- Valued Logic (Cat. No.98CB36138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1998.679340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reed-Muller-Fourier versus Galois field representations of four-valued logic functions
In this paper, we introduce Reed-Muller-Fourier representations of four-valued functions over the ring of integers modulo 4 and compare them with the Galois field representations over GF(4). It is reported that on the average Reed-Muller-Fourier representations exhibit a lower complexity than those based on Galois field polynomials.