N. Vasovic, N. Buric, I. Grozdanović, K. Todorović, A. Samčović
{"title":"噪声诱导的可激系统最小神经网络中受时滞影响的相干振荡","authors":"N. Vasovic, N. Buric, I. Grozdanović, K. Todorović, A. Samčović","doi":"10.1109/NEUREL.2012.6419957","DOIUrl":null,"url":null,"abstract":"Influence of small time-delays in coupling between noisy excitable systems on the coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed coupled deterministic excitable units are chosen such that the system has only one attractor, namely the stationary state, for any value of the coupling and the time-lag. Addition of white noise induces qualitatively different types of coherent oscillations, and we analyzed the influence of coupling time-delay on the properties of these coherent oscillations. The main conclusion is that time-lag τ ≥ 1, but still smaller than the refractory period, and sufficiently strong coupling drastically change signal-to-noise ratio in the quantitative and qualitative way. An interval of noise values implies quite large signal to noise ratio and different types of noise induced coherence are greatly enhanced. We also observed coincident spiking for small noise intensity and time-lag proportional to the inter-spike interval of the coherent spike trains. On the other hand, time-lags τ <; 1 and/or weak coupling induce negligible changes in the properties of the stochastic coherence.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coherent oscillations in minimal neural network of excitable systems induced by noise and influenced by time delay\",\"authors\":\"N. Vasovic, N. Buric, I. Grozdanović, K. Todorović, A. Samčović\",\"doi\":\"10.1109/NEUREL.2012.6419957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influence of small time-delays in coupling between noisy excitable systems on the coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed coupled deterministic excitable units are chosen such that the system has only one attractor, namely the stationary state, for any value of the coupling and the time-lag. Addition of white noise induces qualitatively different types of coherent oscillations, and we analyzed the influence of coupling time-delay on the properties of these coherent oscillations. The main conclusion is that time-lag τ ≥ 1, but still smaller than the refractory period, and sufficiently strong coupling drastically change signal-to-noise ratio in the quantitative and qualitative way. An interval of noise values implies quite large signal to noise ratio and different types of noise induced coherence are greatly enhanced. We also observed coincident spiking for small noise intensity and time-lag proportional to the inter-spike interval of the coherent spike trains. On the other hand, time-lags τ <; 1 and/or weak coupling induce negligible changes in the properties of the stochastic coherence.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coherent oscillations in minimal neural network of excitable systems induced by noise and influenced by time delay
Influence of small time-delays in coupling between noisy excitable systems on the coherence resonance and self-induced stochastic resonance is studied. Parameters of delayed coupled deterministic excitable units are chosen such that the system has only one attractor, namely the stationary state, for any value of the coupling and the time-lag. Addition of white noise induces qualitatively different types of coherent oscillations, and we analyzed the influence of coupling time-delay on the properties of these coherent oscillations. The main conclusion is that time-lag τ ≥ 1, but still smaller than the refractory period, and sufficiently strong coupling drastically change signal-to-noise ratio in the quantitative and qualitative way. An interval of noise values implies quite large signal to noise ratio and different types of noise induced coherence are greatly enhanced. We also observed coincident spiking for small noise intensity and time-lag proportional to the inter-spike interval of the coherent spike trains. On the other hand, time-lags τ <; 1 and/or weak coupling induce negligible changes in the properties of the stochastic coherence.