在智慧城市应用中使用云

Albino Altomare, Eugenio Cesario, C. Comito, F. Marozzo, D. Talia
{"title":"在智慧城市应用中使用云","authors":"Albino Altomare, Eugenio Cesario, C. Comito, F. Marozzo, D. Talia","doi":"10.1109/CloudCom.2013.137","DOIUrl":null,"url":null,"abstract":"The increasing pervasiveness of mobile devices along with the use of technologies like GPS, Wifi networks, RFID, etc., allows for the collections of large amounts of movement data. This amount of information can be analyzed to extract descriptive and predictive models that can be profitable exploited to improve urban life. This paper presents an integrated Cloud based framework for efficiently managing and analyzing socio-environmental data in the urban context of cities. As case study, we introduce a parallel approach for discovering patterns and rules from trajectory data. Experimental evaluation shows that the trajectory pattern mining process can take advantage from a scalable execution environment offered by a Cloud architecture.","PeriodicalId":198053,"journal":{"name":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","volume":"471 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Clouds for Smart City Applications\",\"authors\":\"Albino Altomare, Eugenio Cesario, C. Comito, F. Marozzo, D. Talia\",\"doi\":\"10.1109/CloudCom.2013.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing pervasiveness of mobile devices along with the use of technologies like GPS, Wifi networks, RFID, etc., allows for the collections of large amounts of movement data. This amount of information can be analyzed to extract descriptive and predictive models that can be profitable exploited to improve urban life. This paper presents an integrated Cloud based framework for efficiently managing and analyzing socio-environmental data in the urban context of cities. As case study, we introduce a parallel approach for discovering patterns and rules from trajectory data. Experimental evaluation shows that the trajectory pattern mining process can take advantage from a scalable execution environment offered by a Cloud architecture.\",\"PeriodicalId\":198053,\"journal\":{\"name\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"volume\":\"471 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2013.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2013.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

移动设备的日益普及以及GPS、Wifi网络、RFID等技术的使用,使得大量移动数据的收集成为可能。这些信息可以通过分析来提取描述性和预测性模型,这些模型可以被有效地利用来改善城市生活。本文提出了一个集成的基于云的框架,用于有效地管理和分析城市背景下的社会环境数据。作为案例研究,我们介绍了一种从轨迹数据中发现模式和规则的并行方法。实验评估表明,轨迹模式挖掘过程可以利用云架构提供的可扩展执行环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Clouds for Smart City Applications
The increasing pervasiveness of mobile devices along with the use of technologies like GPS, Wifi networks, RFID, etc., allows for the collections of large amounts of movement data. This amount of information can be analyzed to extract descriptive and predictive models that can be profitable exploited to improve urban life. This paper presents an integrated Cloud based framework for efficiently managing and analyzing socio-environmental data in the urban context of cities. As case study, we introduce a parallel approach for discovering patterns and rules from trajectory data. Experimental evaluation shows that the trajectory pattern mining process can take advantage from a scalable execution environment offered by a Cloud architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信