鲁棒模型神经网络控制

M. Leahy, M.A. Johnson, D. Bossert, G. Lamont
{"title":"鲁棒模型神经网络控制","authors":"M. Leahy, M.A. Johnson, D. Bossert, G. Lamont","doi":"10.1109/ICSYSE.1990.203167","DOIUrl":null,"url":null,"abstract":"A particular type of robust model-based control, the robust model-based neural-network controller (RMBNNC), is proposed and experimentally evaluated. It combines feedforward payload adaptation based on multilayer perceptron artificial neural networks with a robust feedback controller design based on pseudocontinuous-time analog quantitative feedback theory (QFT). The neural network payload estimator adapts the controller to payload variations while the QFT design process implicitly accounts for the uncertainty in manipulator dynamics due to unmodeled drive system effects. The artificial neural networks are trained through repetitive training on multijoint trajectory tracking error data to provide an estimate of payload. QFT feedback is implemented by a series of simple backwards difference equations. The result is a computationally efficient direct form of robust adaptive control. Tracking performance was experimentally validated on the first three links of a PUMA-560 robot over a standard set of test conditions. The performance improvement potential and limitations of the RMBNNC approach are illustrated","PeriodicalId":259801,"journal":{"name":"1990 IEEE International Conference on Systems Engineering","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust model-based neural network control\",\"authors\":\"M. Leahy, M.A. Johnson, D. Bossert, G. Lamont\",\"doi\":\"10.1109/ICSYSE.1990.203167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A particular type of robust model-based control, the robust model-based neural-network controller (RMBNNC), is proposed and experimentally evaluated. It combines feedforward payload adaptation based on multilayer perceptron artificial neural networks with a robust feedback controller design based on pseudocontinuous-time analog quantitative feedback theory (QFT). The neural network payload estimator adapts the controller to payload variations while the QFT design process implicitly accounts for the uncertainty in manipulator dynamics due to unmodeled drive system effects. The artificial neural networks are trained through repetitive training on multijoint trajectory tracking error data to provide an estimate of payload. QFT feedback is implemented by a series of simple backwards difference equations. The result is a computationally efficient direct form of robust adaptive control. Tracking performance was experimentally validated on the first three links of a PUMA-560 robot over a standard set of test conditions. The performance improvement potential and limitations of the RMBNNC approach are illustrated\",\"PeriodicalId\":259801,\"journal\":{\"name\":\"1990 IEEE International Conference on Systems Engineering\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1990.203167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1990.203167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种特殊的基于鲁棒模型的控制——基于鲁棒模型的神经网络控制器(RMBNNC),并对其进行了实验评估。它将基于多层感知器人工神经网络的前馈载荷自适应与基于伪连续时间模拟定量反馈理论的鲁棒反馈控制器设计相结合。神经网络有效载荷估计器使控制器适应有效载荷的变化,而QFT设计过程隐含地考虑了由于未建模的驱动系统影响而导致的机械臂动力学中的不确定性。通过对多关节轨迹跟踪误差数据的重复训练,对人工神经网络进行训练,以估计有效载荷。QFT反馈是由一系列简单的反向差分方程实现的。结果是一种计算效率高的鲁棒自适应控制的直接形式。在一组标准的测试条件下,对PUMA-560机器人的前三个连杆的跟踪性能进行了实验验证。说明了RMBNNC方法的性能改进潜力和局限性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust model-based neural network control
A particular type of robust model-based control, the robust model-based neural-network controller (RMBNNC), is proposed and experimentally evaluated. It combines feedforward payload adaptation based on multilayer perceptron artificial neural networks with a robust feedback controller design based on pseudocontinuous-time analog quantitative feedback theory (QFT). The neural network payload estimator adapts the controller to payload variations while the QFT design process implicitly accounts for the uncertainty in manipulator dynamics due to unmodeled drive system effects. The artificial neural networks are trained through repetitive training on multijoint trajectory tracking error data to provide an estimate of payload. QFT feedback is implemented by a series of simple backwards difference equations. The result is a computationally efficient direct form of robust adaptive control. Tracking performance was experimentally validated on the first three links of a PUMA-560 robot over a standard set of test conditions. The performance improvement potential and limitations of the RMBNNC approach are illustrated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信