一种基于小波变换g感兴趣区域的彩色图像检索方法

Gang Xu, Fuliang Yin, S. Zhang, Chaorong Wei
{"title":"一种基于小波变换g感兴趣区域的彩色图像检索方法","authors":"Gang Xu, Fuliang Yin, S. Zhang, Chaorong Wei","doi":"10.1109/ICICIP.2010.5564169","DOIUrl":null,"url":null,"abstract":"This paper in the research of Region-Based characteristic image retrieval method foundation, proposed a new kind of the color image retrieval method based on wavelet transformation G-Regions Of Interest (GROI). we first use HVS(Human Visual System) characteristic to choose the color space which fit for the visual characteristics, then use K-means clustering to extract the areas of interest in the wavelet transform domain, and using the local energy of the wavelet coefficients in the areas of interest as a texture feature, color's mean and variance as a color feature, the barycentric coordinates as a position feature, we calculate similarity of between the image content and retrieval. The simulation results show that this GROI method which combined color characteristic,texture characteristic and position characteristic can more accurately find the necessary content of the images to users, significantly improve the accuracy in color image retrieval.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A color image retrieval method based on wavelet transformation G-Regions Of Interest\",\"authors\":\"Gang Xu, Fuliang Yin, S. Zhang, Chaorong Wei\",\"doi\":\"10.1109/ICICIP.2010.5564169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper in the research of Region-Based characteristic image retrieval method foundation, proposed a new kind of the color image retrieval method based on wavelet transformation G-Regions Of Interest (GROI). we first use HVS(Human Visual System) characteristic to choose the color space which fit for the visual characteristics, then use K-means clustering to extract the areas of interest in the wavelet transform domain, and using the local energy of the wavelet coefficients in the areas of interest as a texture feature, color's mean and variance as a color feature, the barycentric coordinates as a position feature, we calculate similarity of between the image content and retrieval. The simulation results show that this GROI method which combined color characteristic,texture characteristic and position characteristic can more accurately find the necessary content of the images to users, significantly improve the accuracy in color image retrieval.\",\"PeriodicalId\":152024,\"journal\":{\"name\":\"2010 International Conference on Intelligent Control and Information Processing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2010.5564169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5564169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在研究基于区域的特征图像检索方法的基础上,提出了一种新的基于小波变换的g感兴趣区域(GROI)的彩色图像检索方法。首先利用HVS(Human Visual System)特征选择适合视觉特征的颜色空间,然后利用K-means聚类方法在小波变换域中提取感兴趣区域,并利用感兴趣区域小波系数的局部能量作为纹理特征,颜色的均值和方差作为颜色特征,质心坐标作为位置特征,计算图像内容与检索之间的相似度。仿真结果表明,结合颜色特征、纹理特征和位置特征的GROI方法可以更准确地为用户找到图像中需要的内容,显著提高了彩色图像检索的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A color image retrieval method based on wavelet transformation G-Regions Of Interest
This paper in the research of Region-Based characteristic image retrieval method foundation, proposed a new kind of the color image retrieval method based on wavelet transformation G-Regions Of Interest (GROI). we first use HVS(Human Visual System) characteristic to choose the color space which fit for the visual characteristics, then use K-means clustering to extract the areas of interest in the wavelet transform domain, and using the local energy of the wavelet coefficients in the areas of interest as a texture feature, color's mean and variance as a color feature, the barycentric coordinates as a position feature, we calculate similarity of between the image content and retrieval. The simulation results show that this GROI method which combined color characteristic,texture characteristic and position characteristic can more accurately find the necessary content of the images to users, significantly improve the accuracy in color image retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信