带半椭圆裂纹的十字形试样约束评价

Yupeng Cao, G. Qian, Yinbiao He, Y. Chao
{"title":"带半椭圆裂纹的十字形试样约束评价","authors":"Yupeng Cao, G. Qian, Yinbiao He, Y. Chao","doi":"10.1115/PVP2018-84427","DOIUrl":null,"url":null,"abstract":"A real crack to be assessed in a RPV is generally a shallow crack subjected to biaxial far-field stresses. However, the fracture toughness Kc or Jc, which is an important material property for the structural integrity assessment of RPV containing cracks, are usually tested on deep cracked compact tension [C(T)] or single-edged bending [SE(B)] specimens under uniaxial loading. The fracture toughness data do not reflect the realistic biaxial loading state that the cracks are subjected to. Cruciform bending [CR(B)] specimen is therefore developed to simulate the biaxial stress state. In this paper, a series of finite element (FE) simulations of the CR(B) specimens containing different semi-elliptical cracks are conducted. Stress-strain curves of materials of different yield strength and hardening behavior reflecting the variation in the mechanical properties of RPV steels due to aging or temperature change are implemented into the finite element models. The J-A2 theory is applied to analyze the crack tip constraint. The results show that the biaxial effect is material property dependent and affected by load levels.","PeriodicalId":428760,"journal":{"name":"Volume 6A: Materials and Fabrication","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraint Assessment for Cruciform Specimens With a Semi-Elliptical Crack\",\"authors\":\"Yupeng Cao, G. Qian, Yinbiao He, Y. Chao\",\"doi\":\"10.1115/PVP2018-84427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real crack to be assessed in a RPV is generally a shallow crack subjected to biaxial far-field stresses. However, the fracture toughness Kc or Jc, which is an important material property for the structural integrity assessment of RPV containing cracks, are usually tested on deep cracked compact tension [C(T)] or single-edged bending [SE(B)] specimens under uniaxial loading. The fracture toughness data do not reflect the realistic biaxial loading state that the cracks are subjected to. Cruciform bending [CR(B)] specimen is therefore developed to simulate the biaxial stress state. In this paper, a series of finite element (FE) simulations of the CR(B) specimens containing different semi-elliptical cracks are conducted. Stress-strain curves of materials of different yield strength and hardening behavior reflecting the variation in the mechanical properties of RPV steels due to aging or temperature change are implemented into the finite element models. The J-A2 theory is applied to analyze the crack tip constraint. The results show that the biaxial effect is material property dependent and affected by load levels.\",\"PeriodicalId\":428760,\"journal\":{\"name\":\"Volume 6A: Materials and Fabrication\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6A: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6A: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在RPV中要评估的真正裂纹通常是受双轴远场应力作用的浅裂纹。然而,断裂韧性Kc或Jc是评估含裂纹RPV结构完整性的重要材料性能,通常在单轴载荷下的深裂纹紧致拉伸[C(T)]或单刃弯曲[SE(B)]试件上进行测试。断裂韧性数据不能反映裂纹所承受的实际双轴加载状态。因此,设计了十字形弯曲[CR(B)]试件来模拟双轴应力状态。本文对含不同半椭圆裂纹的CR(B)试样进行了一系列有限元模拟。将不同屈服强度和硬化行为材料的应力-应变曲线应用到有限元模型中,反映了RPV钢因时效或温度变化而引起的力学性能变化。应用J-A2理论对裂纹尖端约束进行了分析。结果表明,双轴效应与材料性能有关,并受载荷水平的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraint Assessment for Cruciform Specimens With a Semi-Elliptical Crack
A real crack to be assessed in a RPV is generally a shallow crack subjected to biaxial far-field stresses. However, the fracture toughness Kc or Jc, which is an important material property for the structural integrity assessment of RPV containing cracks, are usually tested on deep cracked compact tension [C(T)] or single-edged bending [SE(B)] specimens under uniaxial loading. The fracture toughness data do not reflect the realistic biaxial loading state that the cracks are subjected to. Cruciform bending [CR(B)] specimen is therefore developed to simulate the biaxial stress state. In this paper, a series of finite element (FE) simulations of the CR(B) specimens containing different semi-elliptical cracks are conducted. Stress-strain curves of materials of different yield strength and hardening behavior reflecting the variation in the mechanical properties of RPV steels due to aging or temperature change are implemented into the finite element models. The J-A2 theory is applied to analyze the crack tip constraint. The results show that the biaxial effect is material property dependent and affected by load levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信