基于bellman动态规划原理的期权价格区间

Yulin Du
{"title":"基于bellman动态规划原理的期权价格区间","authors":"Yulin Du","doi":"10.1109/CCDC.2015.7162291","DOIUrl":null,"url":null,"abstract":"The assumption of constant underlying's volatility in Black-Scholes formula cannot be satisfied in financiap market. In this paper, we get the option price intervals assuming the stock volatility lies within a given interval. First we transform this financial problem to a stochastic optimal control problem, then obtain options' maximum and minimum price models through dynamic programming principle. We solve the nonlinear PDE model and narrow the price interval through optimal static hedging. We conclude this paper by giving its applications in U.S.A option market, get the MCD options intervals, comparing with Black-scholes, and find a way to identify arbitrage opportunity in option markets.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option price intervals based on bellman dynamic programming principle\",\"authors\":\"Yulin Du\",\"doi\":\"10.1109/CCDC.2015.7162291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The assumption of constant underlying's volatility in Black-Scholes formula cannot be satisfied in financiap market. In this paper, we get the option price intervals assuming the stock volatility lies within a given interval. First we transform this financial problem to a stochastic optimal control problem, then obtain options' maximum and minimum price models through dynamic programming principle. We solve the nonlinear PDE model and narrow the price interval through optimal static hedging. We conclude this paper by giving its applications in U.S.A option market, get the MCD options intervals, comparing with Black-scholes, and find a way to identify arbitrage opportunity in option markets.\",\"PeriodicalId\":273292,\"journal\":{\"name\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2015.7162291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7162291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金融市场不能满足Black-Scholes公式中标的波动恒定的假设。本文假设股票波动率在给定区间内,得到期权价格区间。首先将该金融问题转化为随机最优控制问题,然后利用动态规划原理得到期权的最大和最小价格模型。通过求解非线性PDE模型,通过最优静态套期保值来缩小价格区间。最后给出了该方法在美国期权市场的应用,得到了MCD期权区间,并与Black-scholes进行了比较,找到了一种识别期权市场套利机会的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Option price intervals based on bellman dynamic programming principle
The assumption of constant underlying's volatility in Black-Scholes formula cannot be satisfied in financiap market. In this paper, we get the option price intervals assuming the stock volatility lies within a given interval. First we transform this financial problem to a stochastic optimal control problem, then obtain options' maximum and minimum price models through dynamic programming principle. We solve the nonlinear PDE model and narrow the price interval through optimal static hedging. We conclude this paper by giving its applications in U.S.A option market, get the MCD options intervals, comparing with Black-scholes, and find a way to identify arbitrage opportunity in option markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信