学习限制编译器测试的测试范围

Junhua Zhu, LiMing Wang, Y. Gu, Xiaojun Lin
{"title":"学习限制编译器测试的测试范围","authors":"Junhua Zhu, LiMing Wang, Y. Gu, Xiaojun Lin","doi":"10.1109/ICSTW.2019.00064","DOIUrl":null,"url":null,"abstract":"it is a tremendous challenge to guarantee the correctness of compilers in a limited time, especially when the compiler product is immature. It is necessary to restrict the test range to avoid over-testing, since our compiler products are usually delivered for specific domain. We perform feature extraction on user code through machine learning and use feature information for fuzzy test case generation. The probability of bugs detected has been improved 3.7 times and case size has been reduced 70%.","PeriodicalId":310230,"journal":{"name":"2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning to Restrict Test Range for Compiler Test\",\"authors\":\"Junhua Zhu, LiMing Wang, Y. Gu, Xiaojun Lin\",\"doi\":\"10.1109/ICSTW.2019.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"it is a tremendous challenge to guarantee the correctness of compilers in a limited time, especially when the compiler product is immature. It is necessary to restrict the test range to avoid over-testing, since our compiler products are usually delivered for specific domain. We perform feature extraction on user code through machine learning and use feature information for fuzzy test case generation. The probability of bugs detected has been improved 3.7 times and case size has been reduced 70%.\",\"PeriodicalId\":310230,\"journal\":{\"name\":\"2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTW.2019.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTW.2019.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在有限的时间内保证编译器的正确性是一个巨大的挑战,特别是当编译器产品还不成熟的时候。限制测试范围以避免过度测试是必要的,因为我们的编译器产品通常是为特定的领域交付的。我们通过机器学习对用户代码进行特征提取,并使用特征信息生成模糊测试用例。检测到错误的概率提高了3.7倍,案例大小减少了70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Restrict Test Range for Compiler Test
it is a tremendous challenge to guarantee the correctness of compilers in a limited time, especially when the compiler product is immature. It is necessary to restrict the test range to avoid over-testing, since our compiler products are usually delivered for specific domain. We perform feature extraction on user code through machine learning and use feature information for fuzzy test case generation. The probability of bugs detected has been improved 3.7 times and case size has been reduced 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信