使用远程认证在空白区域进行可靠的遥测

Omid Fatemieh, M. LeMay, Carl A. Gunter
{"title":"使用远程认证在空白区域进行可靠的遥测","authors":"Omid Fatemieh, M. LeMay, Carl A. Gunter","doi":"10.1145/2076732.2076779","DOIUrl":null,"url":null,"abstract":"We consider reliable telemetry in white spaces in the form of protecting the integrity of distributed spectrum measurements against coordinated misreporting attacks. Our focus is on the case where a subset of the sensors can be remotely attested. We propose a practical framework for using statistical sequential estimation coupled with machine learning classifiers to deter attacks and achieve quantifiably precise outcome. We provide an application-oriented case study in the context of spectrum measurements in the white spaces. The study includes a cost analysis for remote attestation, as well as an evaluation using real transmitter and terrain data from the FCC and NASA for Southwest Pennsylvania. The results show that with as low as 15% penetration of attestation-capable nodes, more than 94% of the attempts from omniscient attackers can be thwarted.","PeriodicalId":397003,"journal":{"name":"Asia-Pacific Computer Systems Architecture Conference","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reliable telemetry in white spaces using remote attestation\",\"authors\":\"Omid Fatemieh, M. LeMay, Carl A. Gunter\",\"doi\":\"10.1145/2076732.2076779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider reliable telemetry in white spaces in the form of protecting the integrity of distributed spectrum measurements against coordinated misreporting attacks. Our focus is on the case where a subset of the sensors can be remotely attested. We propose a practical framework for using statistical sequential estimation coupled with machine learning classifiers to deter attacks and achieve quantifiably precise outcome. We provide an application-oriented case study in the context of spectrum measurements in the white spaces. The study includes a cost analysis for remote attestation, as well as an evaluation using real transmitter and terrain data from the FCC and NASA for Southwest Pennsylvania. The results show that with as low as 15% penetration of attestation-capable nodes, more than 94% of the attempts from omniscient attackers can be thwarted.\",\"PeriodicalId\":397003,\"journal\":{\"name\":\"Asia-Pacific Computer Systems Architecture Conference\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Computer Systems Architecture Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2076732.2076779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Computer Systems Architecture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076732.2076779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑在白色空间中的可靠遥测,以保护分布式频谱测量的完整性,防止协调误报攻击。我们的重点是可以远程验证传感器子集的情况。我们提出了一个实用的框架,用于使用统计顺序估计与机器学习分类器相结合来阻止攻击并获得定量精确的结果。我们提供了一个应用为导向的案例研究背景下的频谱测量在白色空间。该研究包括远程认证的成本分析,以及使用来自FCC和NASA的真实发射机和宾夕法尼亚州西南部地形数据的评估。结果表明,只要具有证明能力的节点的渗透率低至15%,就可以挫败超过94%的无所不知的攻击者的企图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable telemetry in white spaces using remote attestation
We consider reliable telemetry in white spaces in the form of protecting the integrity of distributed spectrum measurements against coordinated misreporting attacks. Our focus is on the case where a subset of the sensors can be remotely attested. We propose a practical framework for using statistical sequential estimation coupled with machine learning classifiers to deter attacks and achieve quantifiably precise outcome. We provide an application-oriented case study in the context of spectrum measurements in the white spaces. The study includes a cost analysis for remote attestation, as well as an evaluation using real transmitter and terrain data from the FCC and NASA for Southwest Pennsylvania. The results show that with as low as 15% penetration of attestation-capable nodes, more than 94% of the attempts from omniscient attackers can be thwarted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信