Wave-iPCRNet:量子启发迭代点云配准网络在电子制造中的点云配准

Quan Zhong, Huafeng Dai, Jun Shao, Jyun-Rong Wang, Tao Chen, Hao Liu
{"title":"Wave-iPCRNet:量子启发迭代点云配准网络在电子制造中的点云配准","authors":"Quan Zhong, Huafeng Dai, Jun Shao, Jyun-Rong Wang, Tao Chen, Hao Liu","doi":"10.1145/3579654.3579703","DOIUrl":null,"url":null,"abstract":"Point cloud registration is one of the important 3D vision tasks. It is a fundamental task of the downstream tasks such as 3D tracking, autonomous driving, 3D reconstruction, and pose estimation. The iterative point cloud registration network (iPCRNet) model is developed by the team of Carnegie Mellon University et al., using point cloud data directly to perform the point cloud registration task. On the other hand, the defect detection in the electronic manufacturing has the requirements of minimal inference time and training cost. Despite the transformer module has achieved good performance on this task, its computation cost increase rapidly while the input data points increased than other modules. Hence, considering these requirements the multi-layer perceptron (MLP) module is usually used. However, the simple MLP module performance on the network design may have some improvements can be done. This work proposed a Wave-iPCRNet model using the quantum-inspired Wave-MLP module achieving the state-of-the-art performance on numerous 2D tasks. On the ModelNet40 benchmark dataset, the Wave-iPCRNet improves the test loss of iPCRNet from 0.038 to 0.031, improving the rotation error of iPCRNet from 15.153 to 14.104, and improving the translation error of iPCRNet from 0.007 to 0.006.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave-iPCRNet: Toward point cloud registration in electronics manufacturing by a quantum-inspired iterative point cloud registration network\",\"authors\":\"Quan Zhong, Huafeng Dai, Jun Shao, Jyun-Rong Wang, Tao Chen, Hao Liu\",\"doi\":\"10.1145/3579654.3579703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point cloud registration is one of the important 3D vision tasks. It is a fundamental task of the downstream tasks such as 3D tracking, autonomous driving, 3D reconstruction, and pose estimation. The iterative point cloud registration network (iPCRNet) model is developed by the team of Carnegie Mellon University et al., using point cloud data directly to perform the point cloud registration task. On the other hand, the defect detection in the electronic manufacturing has the requirements of minimal inference time and training cost. Despite the transformer module has achieved good performance on this task, its computation cost increase rapidly while the input data points increased than other modules. Hence, considering these requirements the multi-layer perceptron (MLP) module is usually used. However, the simple MLP module performance on the network design may have some improvements can be done. This work proposed a Wave-iPCRNet model using the quantum-inspired Wave-MLP module achieving the state-of-the-art performance on numerous 2D tasks. On the ModelNet40 benchmark dataset, the Wave-iPCRNet improves the test loss of iPCRNet from 0.038 to 0.031, improving the rotation error of iPCRNet from 15.153 to 14.104, and improving the translation error of iPCRNet from 0.007 to 0.006.\",\"PeriodicalId\":146783,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579654.3579703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点云配准是三维视觉的重要任务之一。它是3D跟踪、自动驾驶、3D重建和姿态估计等下游任务的基础任务。迭代点云配准网络(iPCRNet)模型由卡内基梅隆大学等团队开发,直接使用点云数据执行点云配准任务。另一方面,电子制造中的缺陷检测要求最小的推理时间和训练成本。尽管变压器模块在该任务中取得了较好的性能,但其计算成本随着输入数据点的增加而迅速增加。因此,考虑到这些要求,通常使用多层感知器(MLP)模块。但是,简单的MLP模块性能在网络设计上可能有一些改进可以做。这项工作提出了一个使用量子启发的Wave-MLP模块的Wave-iPCRNet模型,在许多2D任务上实现了最先进的性能。在ModelNet40基准数据集上,Wave-iPCRNet将iPCRNet的测试损失从0.038提高到0.031,将iPCRNet的旋转误差从15.153提高到14.104,将iPCRNet的平移误差从0.007提高到0.006。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wave-iPCRNet: Toward point cloud registration in electronics manufacturing by a quantum-inspired iterative point cloud registration network
Point cloud registration is one of the important 3D vision tasks. It is a fundamental task of the downstream tasks such as 3D tracking, autonomous driving, 3D reconstruction, and pose estimation. The iterative point cloud registration network (iPCRNet) model is developed by the team of Carnegie Mellon University et al., using point cloud data directly to perform the point cloud registration task. On the other hand, the defect detection in the electronic manufacturing has the requirements of minimal inference time and training cost. Despite the transformer module has achieved good performance on this task, its computation cost increase rapidly while the input data points increased than other modules. Hence, considering these requirements the multi-layer perceptron (MLP) module is usually used. However, the simple MLP module performance on the network design may have some improvements can be done. This work proposed a Wave-iPCRNet model using the quantum-inspired Wave-MLP module achieving the state-of-the-art performance on numerous 2D tasks. On the ModelNet40 benchmark dataset, the Wave-iPCRNet improves the test loss of iPCRNet from 0.038 to 0.031, improving the rotation error of iPCRNet from 15.153 to 14.104, and improving the translation error of iPCRNet from 0.007 to 0.006.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信