使用三维局部二值模式对前列腺癌侵袭性进行早期放射学分类的经验

R. Sicilia, E. Cordelli, M. Merone, E. Luperto, R. Papalia, G. Iannello, P. Soda
{"title":"使用三维局部二值模式对前列腺癌侵袭性进行早期放射学分类的经验","authors":"R. Sicilia, E. Cordelli, M. Merone, E. Luperto, R. Papalia, G. Iannello, P. Soda","doi":"10.1109/CBMS.2019.00078","DOIUrl":null,"url":null,"abstract":"Prostate cancer is the most common form of cancer in Western countries and there is the need to develop clinical decision support systems able to support physicians in the diagnosis of clinical relevant prostate cancer and avoid useless invasive prostate biopsies. In this respect, this paper introduces a radiomic approach that classifies the prostate cancer aggressiveness by combining Three Orthogonal Planes-Local Binary Pattern (TOP - LBP) with other texture measures. Furthermore, to combat the skewed nature of class priors, our proposal employs a data augmentation technique. The results achieved on 99 samples are up-and-coming, they favorably compare against conventional PI-RADS-based approach, and they show also the benefit given by the introduction of TOP-LBP in the radiomic signature.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Early Radiomic Experiences in Classifying Prostate Cancer Aggressiveness using 3D Local Binary Patterns\",\"authors\":\"R. Sicilia, E. Cordelli, M. Merone, E. Luperto, R. Papalia, G. Iannello, P. Soda\",\"doi\":\"10.1109/CBMS.2019.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate cancer is the most common form of cancer in Western countries and there is the need to develop clinical decision support systems able to support physicians in the diagnosis of clinical relevant prostate cancer and avoid useless invasive prostate biopsies. In this respect, this paper introduces a radiomic approach that classifies the prostate cancer aggressiveness by combining Three Orthogonal Planes-Local Binary Pattern (TOP - LBP) with other texture measures. Furthermore, to combat the skewed nature of class priors, our proposal employs a data augmentation technique. The results achieved on 99 samples are up-and-coming, they favorably compare against conventional PI-RADS-based approach, and they show also the benefit given by the introduction of TOP-LBP in the radiomic signature.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

前列腺癌是西方国家最常见的癌症形式,需要开发临床决策支持系统,以支持医生诊断临床相关的前列腺癌,避免无用的侵入性前列腺活检。在这方面,本文介绍了一种结合三正交平面-局部二值模式(TOP - LBP)和其他纹理测量的前列腺癌侵袭性放射学分类方法。此外,为了对抗类先验的偏斜性质,我们的建议采用了数据增强技术。在99个样品上取得的结果是有前途的,它们与传统的基于pi - ads的方法相比具有优势,并且它们也显示了在放射性特征中引入TOP-LBP所带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Early Radiomic Experiences in Classifying Prostate Cancer Aggressiveness using 3D Local Binary Patterns
Prostate cancer is the most common form of cancer in Western countries and there is the need to develop clinical decision support systems able to support physicians in the diagnosis of clinical relevant prostate cancer and avoid useless invasive prostate biopsies. In this respect, this paper introduces a radiomic approach that classifies the prostate cancer aggressiveness by combining Three Orthogonal Planes-Local Binary Pattern (TOP - LBP) with other texture measures. Furthermore, to combat the skewed nature of class priors, our proposal employs a data augmentation technique. The results achieved on 99 samples are up-and-coming, they favorably compare against conventional PI-RADS-based approach, and they show also the benefit given by the introduction of TOP-LBP in the radiomic signature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信