聚合物涂层非织造织物样品声学性能的检验

Gözdenur Ulu, İkilem Göcek
{"title":"聚合物涂层非织造织物样品声学性能的检验","authors":"Gözdenur Ulu, İkilem Göcek","doi":"10.31462/jseam.2023.03249256","DOIUrl":null,"url":null,"abstract":"In this study, different types of polymeric layers were coated in different weights (g/m2) on nonwoven fabrics by extrusion process and then, sound absorption and transmission loss properties of each sample were examined. Nonwoven fabrics were produced from polyester (PET) fiber, formed by the carding process and bonded by the needle punching process. These samples were tested between 50-6000 Hz frequency range to reveal the effect of polymer layer type and weight coated on nonwoven fabrics on the sound absorption and transmission loss performance at the low, medium, and high-frequency values. Polymer layers were coated with the weight of 400 gsm and 800 gsm. Nonwoven fabric samples coated with polyethylene or polypropylene layers and nonwoven fabric samples without polymeric coating were tested by using an impedance tube and compared in terms of sound absorption and transmission loss performance. In the test system, two sides of the samples were tested separately. It was seen that the sound absorption performance of the samples changed in case the sound wave was first incident to the polymeric layer or nonwoven layer.","PeriodicalId":151121,"journal":{"name":"Journal of Structural Engineering & Applied Mechanics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examination of acoustic properties of polymer-coated nonwoven textile samples\",\"authors\":\"Gözdenur Ulu, İkilem Göcek\",\"doi\":\"10.31462/jseam.2023.03249256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, different types of polymeric layers were coated in different weights (g/m2) on nonwoven fabrics by extrusion process and then, sound absorption and transmission loss properties of each sample were examined. Nonwoven fabrics were produced from polyester (PET) fiber, formed by the carding process and bonded by the needle punching process. These samples were tested between 50-6000 Hz frequency range to reveal the effect of polymer layer type and weight coated on nonwoven fabrics on the sound absorption and transmission loss performance at the low, medium, and high-frequency values. Polymer layers were coated with the weight of 400 gsm and 800 gsm. Nonwoven fabric samples coated with polyethylene or polypropylene layers and nonwoven fabric samples without polymeric coating were tested by using an impedance tube and compared in terms of sound absorption and transmission loss performance. In the test system, two sides of the samples were tested separately. It was seen that the sound absorption performance of the samples changed in case the sound wave was first incident to the polymeric layer or nonwoven layer.\",\"PeriodicalId\":151121,\"journal\":{\"name\":\"Journal of Structural Engineering & Applied Mechanics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Engineering & Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31462/jseam.2023.03249256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Engineering & Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31462/jseam.2023.03249256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用挤压法在非织造布上涂覆不同重量(g/m2)的不同类型聚合物层,测试了每种样品的吸声和透射损失性能。以涤纶(PET)纤维为原料,经精梳成型,针刺粘合,制成无纺布。在50 ~ 6000 Hz的频率范围内对样品进行测试,以揭示涂覆聚合物层类型和重量对低、中、高频吸声和透射损失性能的影响。聚合物层分别涂覆400 gsm和800 gsm的重量。采用阻抗管测试了涂覆聚乙烯或聚丙烯涂层的非织造布样品和未涂覆聚合物涂层的非织造布样品的吸声性能和透射损耗性能。在测试系统中,对样品的两面分别进行测试。结果表明,当声波首先入射到聚合物层或非织造布层时,样品的吸声性能发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examination of acoustic properties of polymer-coated nonwoven textile samples
In this study, different types of polymeric layers were coated in different weights (g/m2) on nonwoven fabrics by extrusion process and then, sound absorption and transmission loss properties of each sample were examined. Nonwoven fabrics were produced from polyester (PET) fiber, formed by the carding process and bonded by the needle punching process. These samples were tested between 50-6000 Hz frequency range to reveal the effect of polymer layer type and weight coated on nonwoven fabrics on the sound absorption and transmission loss performance at the low, medium, and high-frequency values. Polymer layers were coated with the weight of 400 gsm and 800 gsm. Nonwoven fabric samples coated with polyethylene or polypropylene layers and nonwoven fabric samples without polymeric coating were tested by using an impedance tube and compared in terms of sound absorption and transmission loss performance. In the test system, two sides of the samples were tested separately. It was seen that the sound absorption performance of the samples changed in case the sound wave was first incident to the polymeric layer or nonwoven layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信