拉普拉斯变换数值反演的有理- talbot算法的参数N分析

E. Freitas, George Ricardo Libardi Calixto, Juciara Alves Ferreira, Bárbara Denicol do Amaral Rodriguez, J. F. Prolo Filho
{"title":"拉普拉斯变换数值反演的有理- talbot算法的参数N分析","authors":"E. Freitas, George Ricardo Libardi Calixto, Juciara Alves Ferreira, Bárbara Denicol do Amaral Rodriguez, J. F. Prolo Filho","doi":"10.14295/vetor.v31i2.13756","DOIUrl":null,"url":null,"abstract":"This article investigates the numerical inversion of the Laplace Transform by the Rational-Talbot method and analyzes the influence on the variation of the free parameter N established by the technique when applied to certain functions. The set of elementary functions, for which the method is tested, has exponential and oscillatory characteristics. Based on the results obtained, it was concluded that the Rational-Talbot method is e cient for the inversion of decreasing exponential functions. At the same time, to perform the inversion process effectively for trigonometric forms, the algorithm requires a greater amount of terms in the sum. For higher values of N, the technique works well. In fact, this is observed in inverting the functions transform, that combine trigonometric and polynomial factors. The method numerical results have a good precision for the treatment of decreasing exponential functions when multiplied by trigonometric functions.","PeriodicalId":258655,"journal":{"name":"VETOR - Revista de Ciências Exatas e Engenharias","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter N Analysis on the Rational-Talbot Algorithm for Numerical Inversion of Laplace Transform\",\"authors\":\"E. Freitas, George Ricardo Libardi Calixto, Juciara Alves Ferreira, Bárbara Denicol do Amaral Rodriguez, J. F. Prolo Filho\",\"doi\":\"10.14295/vetor.v31i2.13756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the numerical inversion of the Laplace Transform by the Rational-Talbot method and analyzes the influence on the variation of the free parameter N established by the technique when applied to certain functions. The set of elementary functions, for which the method is tested, has exponential and oscillatory characteristics. Based on the results obtained, it was concluded that the Rational-Talbot method is e cient for the inversion of decreasing exponential functions. At the same time, to perform the inversion process effectively for trigonometric forms, the algorithm requires a greater amount of terms in the sum. For higher values of N, the technique works well. In fact, this is observed in inverting the functions transform, that combine trigonometric and polynomial factors. The method numerical results have a good precision for the treatment of decreasing exponential functions when multiplied by trigonometric functions.\",\"PeriodicalId\":258655,\"journal\":{\"name\":\"VETOR - Revista de Ciências Exatas e Engenharias\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VETOR - Revista de Ciências Exatas e Engenharias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14295/vetor.v31i2.13756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VETOR - Revista de Ciências Exatas e Engenharias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/vetor.v31i2.13756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用Rational-Talbot方法对拉普拉斯变换进行数值反演的方法,并分析了该方法建立的自由参数N在应用于某些函数时对其变化的影响。该方法所检验的初等函数集具有指数和振荡特性。在此基础上,得出了Rational-Talbot方法对于指数递减函数的反演是有效的。同时,为了有效地完成三角形式的反演过程,该算法需要在求和中包含更多的项。对于较高的N值,该技术效果良好。事实上,这是在函数的反变换中观察到的,它结合了三角函数和多项式因子。该方法的数值结果对于处理指数函数与三角函数相乘的降指数函数具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter N Analysis on the Rational-Talbot Algorithm for Numerical Inversion of Laplace Transform
This article investigates the numerical inversion of the Laplace Transform by the Rational-Talbot method and analyzes the influence on the variation of the free parameter N established by the technique when applied to certain functions. The set of elementary functions, for which the method is tested, has exponential and oscillatory characteristics. Based on the results obtained, it was concluded that the Rational-Talbot method is e cient for the inversion of decreasing exponential functions. At the same time, to perform the inversion process effectively for trigonometric forms, the algorithm requires a greater amount of terms in the sum. For higher values of N, the technique works well. In fact, this is observed in inverting the functions transform, that combine trigonometric and polynomial factors. The method numerical results have a good precision for the treatment of decreasing exponential functions when multiplied by trigonometric functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信