{"title":"基于PCA-SVM的高维数据分类可视化研究","authors":"Zhongwen Zhao, Huanghuang Guo","doi":"10.1109/DSC.2017.57","DOIUrl":null,"url":null,"abstract":"This paper aims to provide a new method of visualizing high-dimensional data classification by employing principal component analysis (PCA) and support vector machine (SVM). In this method, PCA is adopted to reduce the dimension of high-dimensional data, and then SVM is used for the data classification process. At last, the classified result is projected to two-dimension mapping. The method can visualize high-dimensional data classification, and provides the information of the data near classification boundary. Research result verifies the availability and effectiveness of the method.","PeriodicalId":195208,"journal":{"name":"International Conference on Data Science in Cyberspace","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Visualization Study of High-Dimensional Data Classification Based on PCA-SVM\",\"authors\":\"Zhongwen Zhao, Huanghuang Guo\",\"doi\":\"10.1109/DSC.2017.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to provide a new method of visualizing high-dimensional data classification by employing principal component analysis (PCA) and support vector machine (SVM). In this method, PCA is adopted to reduce the dimension of high-dimensional data, and then SVM is used for the data classification process. At last, the classified result is projected to two-dimension mapping. The method can visualize high-dimensional data classification, and provides the information of the data near classification boundary. Research result verifies the availability and effectiveness of the method.\",\"PeriodicalId\":195208,\"journal\":{\"name\":\"International Conference on Data Science in Cyberspace\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Data Science in Cyberspace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC.2017.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Data Science in Cyberspace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC.2017.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visualization Study of High-Dimensional Data Classification Based on PCA-SVM
This paper aims to provide a new method of visualizing high-dimensional data classification by employing principal component analysis (PCA) and support vector machine (SVM). In this method, PCA is adopted to reduce the dimension of high-dimensional data, and then SVM is used for the data classification process. At last, the classified result is projected to two-dimension mapping. The method can visualize high-dimensional data classification, and provides the information of the data near classification boundary. Research result verifies the availability and effectiveness of the method.