身份与表情的对抗三维人脸解纠结

Yajie Gu, Nick E. Pears, Hao Sun
{"title":"身份与表情的对抗三维人脸解纠结","authors":"Yajie Gu, Nick E. Pears, Hao Sun","doi":"10.1109/FG57933.2023.10042602","DOIUrl":null,"url":null,"abstract":"We propose a new framework to decompose 3D facial shape into identity and expression. Existing 3D face disentanglement methods assume the presence of a corresponding neutral (i.e. identity) face for each subject. Our method designs an identity discriminator to obviate this requirement. This is a binary classifier that determines if two input faces are from the same identity, and encourages the synthesised identity face to have the same identity features as the input face and to approach the ‘apathy’ expression. To this end, we take advantage of adversarial learning to train a PointNet-based variational auto-encoder and discriminator. Comprehensive experiments are employed on CoMA, BU3DFE, and FaceScape datasets. Results demonstrate state-of-the-art performance with the option of operating in a more versatile application setting of no known neutral ground truths. Code is available at https://github.com/rmraaron/FaceExpDisentanglement.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial 3D Face Disentanglement of Identity and Expression\",\"authors\":\"Yajie Gu, Nick E. Pears, Hao Sun\",\"doi\":\"10.1109/FG57933.2023.10042602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new framework to decompose 3D facial shape into identity and expression. Existing 3D face disentanglement methods assume the presence of a corresponding neutral (i.e. identity) face for each subject. Our method designs an identity discriminator to obviate this requirement. This is a binary classifier that determines if two input faces are from the same identity, and encourages the synthesised identity face to have the same identity features as the input face and to approach the ‘apathy’ expression. To this end, we take advantage of adversarial learning to train a PointNet-based variational auto-encoder and discriminator. Comprehensive experiments are employed on CoMA, BU3DFE, and FaceScape datasets. Results demonstrate state-of-the-art performance with the option of operating in a more versatile application setting of no known neutral ground truths. Code is available at https://github.com/rmraaron/FaceExpDisentanglement.\",\"PeriodicalId\":318766,\"journal\":{\"name\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"volume\":\"371 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FG57933.2023.10042602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的框架,将三维面部形状分解为身份和表情。现有的3D人脸解纠缠方法假设每个受试者都有一个相应的中性(即身份)面孔。我们的方法设计了一个身份鉴别器来避免这一要求。这是一个二元分类器,确定两个输入面孔是否来自相同的身份,并鼓励合成身份面孔具有与输入面孔相同的身份特征,并接近“冷漠”表情。为此,我们利用对抗性学习来训练基于pointnet的变分自编码器和鉴别器。在CoMA、BU3DFE和FaceScape数据集上进行了综合实验。结果展示了最先进的性能,并选择在一个更通用的应用设置中操作,没有已知的中立的基础真理。代码可从https://github.com/rmraaron/FaceExpDisentanglement获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial 3D Face Disentanglement of Identity and Expression
We propose a new framework to decompose 3D facial shape into identity and expression. Existing 3D face disentanglement methods assume the presence of a corresponding neutral (i.e. identity) face for each subject. Our method designs an identity discriminator to obviate this requirement. This is a binary classifier that determines if two input faces are from the same identity, and encourages the synthesised identity face to have the same identity features as the input face and to approach the ‘apathy’ expression. To this end, we take advantage of adversarial learning to train a PointNet-based variational auto-encoder and discriminator. Comprehensive experiments are employed on CoMA, BU3DFE, and FaceScape datasets. Results demonstrate state-of-the-art performance with the option of operating in a more versatile application setting of no known neutral ground truths. Code is available at https://github.com/rmraaron/FaceExpDisentanglement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信