边缘计算中模块化幂运算的安全外包算法

Tianyi Zhang, Jian Wang
{"title":"边缘计算中模块化幂运算的安全外包算法","authors":"Tianyi Zhang, Jian Wang","doi":"10.1109/TrustCom50675.2020.00082","DOIUrl":null,"url":null,"abstract":"As one of the most expensive computations in public-key cryptosystems, modular exponentiation is typically out-sourced to the cloud servers. Traditional cloud-based outsourcing algorithms depend on multiple untrusted servers to guarantee the security, which may lead to vulnerability to the collusion attack. Although recent single-server multiple-requests outsourcing algorithms are more secure, they have to perform multiple requests to the single untrusted server to guarantee the security and checkability of the data, which will incur unacceptable latency and local computational costs. In comparison, the edge computing paradigm enhances security since it has multiple computational nodes, including some highly secure local computational nodes. In this paper, we propose the secure outsourcing algorithm of modular exponentiation for the edge computing paradigm. To address the dilemma that the computational resources of different nodes vary significantly, we design two lightweight algorithms to adaptively separate the modular exponentiation to the nodes based on the computational resources. To guarantee the outsourcing checkability, we propose a protocol verify the result returned from each node. We formally prove the security and checkability of our algorithm and validate the efficiency of our algorithm based on experiments and case studies.","PeriodicalId":221956,"journal":{"name":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Secure Outsourcing Algorithms of Modular Exponentiations in Edge Computing\",\"authors\":\"Tianyi Zhang, Jian Wang\",\"doi\":\"10.1109/TrustCom50675.2020.00082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most expensive computations in public-key cryptosystems, modular exponentiation is typically out-sourced to the cloud servers. Traditional cloud-based outsourcing algorithms depend on multiple untrusted servers to guarantee the security, which may lead to vulnerability to the collusion attack. Although recent single-server multiple-requests outsourcing algorithms are more secure, they have to perform multiple requests to the single untrusted server to guarantee the security and checkability of the data, which will incur unacceptable latency and local computational costs. In comparison, the edge computing paradigm enhances security since it has multiple computational nodes, including some highly secure local computational nodes. In this paper, we propose the secure outsourcing algorithm of modular exponentiation for the edge computing paradigm. To address the dilemma that the computational resources of different nodes vary significantly, we design two lightweight algorithms to adaptively separate the modular exponentiation to the nodes based on the computational resources. To guarantee the outsourcing checkability, we propose a protocol verify the result returned from each node. We formally prove the security and checkability of our algorithm and validate the efficiency of our algorithm based on experiments and case studies.\",\"PeriodicalId\":221956,\"journal\":{\"name\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TrustCom50675.2020.00082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TrustCom50675.2020.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作为公钥密码系统中最昂贵的计算之一,模块化幂运算通常外包给云服务器。传统的云外包算法依赖于多个不可信的服务器来保证安全,容易受到合谋攻击。虽然目前的单服务器多请求外包算法更加安全,但它们必须向单个不受信任的服务器执行多个请求,以保证数据的安全性和可检查性,这将产生不可接受的延迟和本地计算成本。相比之下,边缘计算范式增强了安全性,因为它有多个计算节点,包括一些高度安全的本地计算节点。在本文中,我们提出了一种安全外包算法的模块化幂运算的边缘计算范式。为了解决不同节点计算资源差异较大的难题,我们设计了两种轻量级算法,根据计算资源自适应地对节点进行模块化幂次分离。为了保证外包的可检查性,我们提出了一个协议来验证从每个节点返回的结果。通过实验和案例分析,正式证明了算法的安全性和可检查性,并验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Outsourcing Algorithms of Modular Exponentiations in Edge Computing
As one of the most expensive computations in public-key cryptosystems, modular exponentiation is typically out-sourced to the cloud servers. Traditional cloud-based outsourcing algorithms depend on multiple untrusted servers to guarantee the security, which may lead to vulnerability to the collusion attack. Although recent single-server multiple-requests outsourcing algorithms are more secure, they have to perform multiple requests to the single untrusted server to guarantee the security and checkability of the data, which will incur unacceptable latency and local computational costs. In comparison, the edge computing paradigm enhances security since it has multiple computational nodes, including some highly secure local computational nodes. In this paper, we propose the secure outsourcing algorithm of modular exponentiation for the edge computing paradigm. To address the dilemma that the computational resources of different nodes vary significantly, we design two lightweight algorithms to adaptively separate the modular exponentiation to the nodes based on the computational resources. To guarantee the outsourcing checkability, we propose a protocol verify the result returned from each node. We formally prove the security and checkability of our algorithm and validate the efficiency of our algorithm based on experiments and case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信