正特征的动态仿射映射

J. Byszewski, G. Cornelissen, M. Houben, L. V. D. Meijden
{"title":"正特征的动态仿射映射","authors":"J. Byszewski, G. Cornelissen, M. Houben, L. V. D. Meijden","doi":"10.1090/conm/744/14982","DOIUrl":null,"url":null,"abstract":"We study fixed points of iterates of dynamically affine maps (a generalisation of Latt\\`es maps) over algebraically closed fields of positive characteristic $p$. We present and study certain hypotheses that imply a dichotomy for the Artin-Mazur zeta function of the dynamical system: it is either rational or non-holonomic, depending on specific characteristics of the map. We also study the algebraicity of the so-called tame zeta function, the generating function for periodic points of order coprime to $p$. We then verify these hypotheses for dynamically affine maps on the projective line, generalising previous work of Bridy, and, in arbitrary dimension, for maps on Kummer varieties arising from multiplication by integers on abelian varieties.","PeriodicalId":412693,"journal":{"name":"Dynamics: Topology and Numbers","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamically affine maps in positive\\n characteristic\",\"authors\":\"J. Byszewski, G. Cornelissen, M. Houben, L. V. D. Meijden\",\"doi\":\"10.1090/conm/744/14982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study fixed points of iterates of dynamically affine maps (a generalisation of Latt\\\\`es maps) over algebraically closed fields of positive characteristic $p$. We present and study certain hypotheses that imply a dichotomy for the Artin-Mazur zeta function of the dynamical system: it is either rational or non-holonomic, depending on specific characteristics of the map. We also study the algebraicity of the so-called tame zeta function, the generating function for periodic points of order coprime to $p$. We then verify these hypotheses for dynamically affine maps on the projective line, generalising previous work of Bridy, and, in arbitrary dimension, for maps on Kummer varieties arising from multiplication by integers on abelian varieties.\",\"PeriodicalId\":412693,\"journal\":{\"name\":\"Dynamics: Topology and Numbers\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics: Topology and Numbers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/744/14982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics: Topology and Numbers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/744/14982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有正特征$p$的代数闭域上动态仿射映射(Latt\ ' es映射的一种推广)迭代的不动点。我们提出并研究了一些假设,这些假设暗示了动力系统的Artin-Mazur zeta函数的二分法:它要么是理性的,要么是非完整的,这取决于映射的特定特征。我们还研究了所谓的驯服zeta函数的代数性,它是周期点的一阶对p$的互素数的生成函数。然后,我们对投影线上的动态仿射映射验证了这些假设,推广了Bridy之前的工作,并在任意维度上验证了由阿贝尔变体上的整数乘法引起的Kummer变体上的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamically affine maps in positive characteristic
We study fixed points of iterates of dynamically affine maps (a generalisation of Latt\`es maps) over algebraically closed fields of positive characteristic $p$. We present and study certain hypotheses that imply a dichotomy for the Artin-Mazur zeta function of the dynamical system: it is either rational or non-holonomic, depending on specific characteristics of the map. We also study the algebraicity of the so-called tame zeta function, the generating function for periodic points of order coprime to $p$. We then verify these hypotheses for dynamically affine maps on the projective line, generalising previous work of Bridy, and, in arbitrary dimension, for maps on Kummer varieties arising from multiplication by integers on abelian varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信