一种新的无损数据压缩预测编码粒子模型

D. Shuai, Qing Shuai
{"title":"一种新的无损数据压缩预测编码粒子模型","authors":"D. Shuai, Qing Shuai","doi":"10.1109/IMSCCS.2006.15","DOIUrl":null,"url":null,"abstract":"This paper presents a new generalized particle model (GPM) to generate the prediction coding for lossless data compression. Local rules for particle movement in GPM, parallel algorithm and its implementation structure to generate the desired predictive coding are discussed. The proposed GPM approach has advantages in terms of encoding speed, parallelism, scalability, simplicity, and easy hardware implementation over other sequential lossless compression methods","PeriodicalId":202629,"journal":{"name":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","volume":"52 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Particle Model For Prediction Coding of Lossless Data Compression\",\"authors\":\"D. Shuai, Qing Shuai\",\"doi\":\"10.1109/IMSCCS.2006.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new generalized particle model (GPM) to generate the prediction coding for lossless data compression. Local rules for particle movement in GPM, parallel algorithm and its implementation structure to generate the desired predictive coding are discussed. The proposed GPM approach has advantages in terms of encoding speed, parallelism, scalability, simplicity, and easy hardware implementation over other sequential lossless compression methods\",\"PeriodicalId\":202629,\"journal\":{\"name\":\"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)\",\"volume\":\"52 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMSCCS.2006.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2006.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的广义粒子模型(GPM)来生成无损数据压缩的预测编码。讨论了GPM中粒子运动的局部规则、并行算法及其生成所需预测编码的实现结构。与其他顺序无损压缩方法相比,本文提出的GPM方法在编码速度、并行性、可伸缩性、简单性和易于硬件实现方面具有优势
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Particle Model For Prediction Coding of Lossless Data Compression
This paper presents a new generalized particle model (GPM) to generate the prediction coding for lossless data compression. Local rules for particle movement in GPM, parallel algorithm and its implementation structure to generate the desired predictive coding are discussed. The proposed GPM approach has advantages in terms of encoding speed, parallelism, scalability, simplicity, and easy hardware implementation over other sequential lossless compression methods
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信