电力数据的无监督最优异常检测模型选择

Guangrong Yu, Qinsheng Yang, Yongjin Zhu, Shiwei Zhang, Baotai Wu, Shangdong Liu, Yimu Ji
{"title":"电力数据的无监督最优异常检测模型选择","authors":"Guangrong Yu, Qinsheng Yang, Yongjin Zhu, Shiwei Zhang, Baotai Wu, Shangdong Liu, Yimu Ji","doi":"10.1109/CAC57257.2022.10054730","DOIUrl":null,"url":null,"abstract":"Power data is complex and diverse. Different data types correspond to different power anomaly monitoring models. How to use a variety of feature combinations to automatically screen the optimal power anomaly detection model in the scenario of unsupervised power data anomaly detection is an urgent problem to be solved. First, extract the complex power data features into seven types of eigenvalues. Then, using the selection algorithm for unsupervised anomaly detection models based on the METAOD method, the optimal selection results of anomaly detection models under various power data sets are used to generate a selection database. Finally, divide the seven types of features into different combinations and use the reward principle and the corresponding abnormal detection results to combine and screen the optimal feature combination and the optimal power abnormality monitoring model for the existing data.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Optimal Anomaly Detection Model Selection in Power Data\",\"authors\":\"Guangrong Yu, Qinsheng Yang, Yongjin Zhu, Shiwei Zhang, Baotai Wu, Shangdong Liu, Yimu Ji\",\"doi\":\"10.1109/CAC57257.2022.10054730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power data is complex and diverse. Different data types correspond to different power anomaly monitoring models. How to use a variety of feature combinations to automatically screen the optimal power anomaly detection model in the scenario of unsupervised power data anomaly detection is an urgent problem to be solved. First, extract the complex power data features into seven types of eigenvalues. Then, using the selection algorithm for unsupervised anomaly detection models based on the METAOD method, the optimal selection results of anomaly detection models under various power data sets are used to generate a selection database. Finally, divide the seven types of features into different combinations and use the reward principle and the corresponding abnormal detection results to combine and screen the optimal feature combination and the optimal power abnormality monitoring model for the existing data.\",\"PeriodicalId\":287137,\"journal\":{\"name\":\"2022 China Automation Congress (CAC)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 China Automation Congress (CAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAC57257.2022.10054730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10054730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力数据复杂多样。不同的数据类型对应不同的电源异常监测模型。在无监督电力数据异常检测场景下,如何利用多种特征组合自动筛选最优的电力异常检测模型是一个亟待解决的问题。首先,将复功率数据特征提取为7类特征值。然后,利用基于METAOD方法的无监督异常检测模型选择算法,利用不同功率数据集下异常检测模型的最优选择结果生成选择数据库;最后,将7类特征划分为不同的组合,并利用奖励原则和相应的异常检测结果,对现有数据进行组合筛选最优特征组合和最优电力异常监测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Optimal Anomaly Detection Model Selection in Power Data
Power data is complex and diverse. Different data types correspond to different power anomaly monitoring models. How to use a variety of feature combinations to automatically screen the optimal power anomaly detection model in the scenario of unsupervised power data anomaly detection is an urgent problem to be solved. First, extract the complex power data features into seven types of eigenvalues. Then, using the selection algorithm for unsupervised anomaly detection models based on the METAOD method, the optimal selection results of anomaly detection models under various power data sets are used to generate a selection database. Finally, divide the seven types of features into different combinations and use the reward principle and the corresponding abnormal detection results to combine and screen the optimal feature combination and the optimal power abnormality monitoring model for the existing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信