一个多项式时间的最优算法,同时缓冲和线的大小

C. Chu, D. F. Wong
{"title":"一个多项式时间的最优算法,同时缓冲和线的大小","authors":"C. Chu, D. F. Wong","doi":"10.1109/DATE.1998.655901","DOIUrl":null,"url":null,"abstract":"An interconnect joining a source and a sink is divided into fixed-length uniform-width wire segments, and some adjacent segments have buffers in between. The problem we considered is to simultaneously size the buffers and the segments so that the Elmore delay from the source to the sink is minimized. Previously, no polynomial time algorithm for the problem has been reported in the literature. In this paper, we present a polynomial time algorithm SBWS for the simultaneous buffer and wire sizing problem. SBWS is an iterative algorithm with guaranteed convergence to the optimal solution. It runs in quadratic time and uses constant memory for computation. Also, experimental results show that SBWS is extremely efficient in practice. For example, for an interconnect of 10 000 segments and buffers, the CPU time is only 0.127 s.","PeriodicalId":179207,"journal":{"name":"Proceedings Design, Automation and Test in Europe","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A polynomial time optimal algorithm for simultaneous buffer and wire sizing\",\"authors\":\"C. Chu, D. F. Wong\",\"doi\":\"10.1109/DATE.1998.655901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interconnect joining a source and a sink is divided into fixed-length uniform-width wire segments, and some adjacent segments have buffers in between. The problem we considered is to simultaneously size the buffers and the segments so that the Elmore delay from the source to the sink is minimized. Previously, no polynomial time algorithm for the problem has been reported in the literature. In this paper, we present a polynomial time algorithm SBWS for the simultaneous buffer and wire sizing problem. SBWS is an iterative algorithm with guaranteed convergence to the optimal solution. It runs in quadratic time and uses constant memory for computation. Also, experimental results show that SBWS is extremely efficient in practice. For example, for an interconnect of 10 000 segments and buffers, the CPU time is only 0.127 s.\",\"PeriodicalId\":179207,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.1998.655901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.1998.655901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

连接源和汇的互连被分成定长等宽的线段,一些相邻的线段之间有缓冲器。我们考虑的问题是同时调整缓冲区和段的大小,以便从源到接收器的Elmore延迟最小化。在此之前,文献中没有针对该问题的多项式时间算法的报道。在本文中,我们提出了一个多项式时间算法SBWS,用于同时处理缓冲区和导线的尺寸问题。SBWS是一种保证收敛到最优解的迭代算法。它以二次元时间运行,并使用恒定内存进行计算。实验结果表明,SBWS在实际应用中是非常高效的。例如,对于10000个段和缓冲区的互连,CPU时间仅为0.127 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A polynomial time optimal algorithm for simultaneous buffer and wire sizing
An interconnect joining a source and a sink is divided into fixed-length uniform-width wire segments, and some adjacent segments have buffers in between. The problem we considered is to simultaneously size the buffers and the segments so that the Elmore delay from the source to the sink is minimized. Previously, no polynomial time algorithm for the problem has been reported in the literature. In this paper, we present a polynomial time algorithm SBWS for the simultaneous buffer and wire sizing problem. SBWS is an iterative algorithm with guaranteed convergence to the optimal solution. It runs in quadratic time and uses constant memory for computation. Also, experimental results show that SBWS is extremely efficient in practice. For example, for an interconnect of 10 000 segments and buffers, the CPU time is only 0.127 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信