激活函数和层数对CNN水果分类的影响

Z. Haq, Z. Jaffery
{"title":"激活函数和层数对CNN水果分类的影响","authors":"Z. Haq, Z. Jaffery","doi":"10.1109/INDIACom51348.2021.00040","DOIUrl":null,"url":null,"abstract":"The classification of fruits into various classes is becoming inherent to the food processing industry. This paper presents a simulation analysis of effect of activation functions: ReLu, Softmax, sigmoid, and Softplus on the accuracy and latency of the CNN algorithm for classification of fruits: apple, banana and orange. The paper presents the comparative increase of accuracy of different activation functions over the ReLu activation function. The algorithm is trained and tested over a database created by downloading fruit images from the online sources. Also, this paper presents the effect of increasing the number of convolutional layers of the CNN algorithm on the Accuracy and latency of the model. The software used for simulation of the model is Python implemented using Jupyter Notebook over the Anaconda platform.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Impact of Activation Functions and Number of Layers on the Classification of Fruits using CNN\",\"authors\":\"Z. Haq, Z. Jaffery\",\"doi\":\"10.1109/INDIACom51348.2021.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of fruits into various classes is becoming inherent to the food processing industry. This paper presents a simulation analysis of effect of activation functions: ReLu, Softmax, sigmoid, and Softplus on the accuracy and latency of the CNN algorithm for classification of fruits: apple, banana and orange. The paper presents the comparative increase of accuracy of different activation functions over the ReLu activation function. The algorithm is trained and tested over a database created by downloading fruit images from the online sources. Also, this paper presents the effect of increasing the number of convolutional layers of the CNN algorithm on the Accuracy and latency of the model. The software used for simulation of the model is Python implemented using Jupyter Notebook over the Anaconda platform.\",\"PeriodicalId\":415594,\"journal\":{\"name\":\"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIACom51348.2021.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

将水果分为不同的类别已成为食品加工业的固有特征。本文仿真分析了激活函数ReLu、Softmax、sigmoid和Softplus对CNN算法分类水果(苹果、香蕉和橘子)准确率和延迟的影响。本文介绍了不同激活函数相对于ReLu激活函数精度的比较提高。该算法通过从在线资源下载水果图像创建的数据库进行训练和测试。此外,本文还讨论了增加CNN算法的卷积层数对模型准确率和延迟的影响。用于模拟模型的软件是Python,在Anaconda平台上使用Jupyter Notebook实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Activation Functions and Number of Layers on the Classification of Fruits using CNN
The classification of fruits into various classes is becoming inherent to the food processing industry. This paper presents a simulation analysis of effect of activation functions: ReLu, Softmax, sigmoid, and Softplus on the accuracy and latency of the CNN algorithm for classification of fruits: apple, banana and orange. The paper presents the comparative increase of accuracy of different activation functions over the ReLu activation function. The algorithm is trained and tested over a database created by downloading fruit images from the online sources. Also, this paper presents the effect of increasing the number of convolutional layers of the CNN algorithm on the Accuracy and latency of the model. The software used for simulation of the model is Python implemented using Jupyter Notebook over the Anaconda platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信