从一个完美序列出发的最优零相关带序列集的广义构造

Takafumi Hayashi, S. Matsufuji
{"title":"从一个完美序列出发的最优零相关带序列集的广义构造","authors":"Takafumi Hayashi, S. Matsufuji","doi":"10.1109/IWSDA.2009.5346427","DOIUrl":null,"url":null,"abstract":"The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ). This sequence set is referred to as a zero-correlation zone sequence set. The proposed sequence construction can generate an optimal ZCZ sequence set, the member size of which reaches the theoretical bound. The proposed sequence construction generates a ZCZ sequence set from a perfect sequence and a Hadamard matrix.","PeriodicalId":120760,"journal":{"name":"2009 Fourth International Workshop on Signal Design and its Applications in Communications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A generalized construction of optimal zero-correlation zone sequence set from a perfect sequence\",\"authors\":\"Takafumi Hayashi, S. Matsufuji\",\"doi\":\"10.1109/IWSDA.2009.5346427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ). This sequence set is referred to as a zero-correlation zone sequence set. The proposed sequence construction can generate an optimal ZCZ sequence set, the member size of which reaches the theoretical bound. The proposed sequence construction generates a ZCZ sequence set from a perfect sequence and a Hadamard matrix.\",\"PeriodicalId\":120760,\"journal\":{\"name\":\"2009 Fourth International Workshop on Signal Design and its Applications in Communications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fourth International Workshop on Signal Design and its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2009.5346427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Workshop on Signal Design and its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2009.5346427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种构造具有零相关带的序列集的新方法。这个序列集称为零相关带序列集。所提出的序列构造可以生成最优的ZCZ序列集,该序列集的成员大小达到理论界。该序列构造由一个完美序列和一个Hadamard矩阵生成一个ZCZ序列集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalized construction of optimal zero-correlation zone sequence set from a perfect sequence
The present paper introduces a new approach to the construction of a sequence set with a zero-correlation zone (ZCZ). This sequence set is referred to as a zero-correlation zone sequence set. The proposed sequence construction can generate an optimal ZCZ sequence set, the member size of which reaches the theoretical bound. The proposed sequence construction generates a ZCZ sequence set from a perfect sequence and a Hadamard matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信