基于自适应网络的动态双足步行机器人模糊控制

Changjiu Zhou, K. Jagannathan
{"title":"基于自适应网络的动态双足步行机器人模糊控制","authors":"Changjiu Zhou, K. Jagannathan","doi":"10.1109/IJSIS.1996.565058","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a adaptive-network-based fuzzy inference system (ANFIS) control strategy based on a hierarchy of walking planning level, gait generating level and joint control level, which do not require detailed kinematics or dynamic biped models. The ANFIS controller, which enhances Sugeno fuzzy controller with self-learning capability from adaptive network, can combine the qualitative knowledge in fuzzy rules and be fine-tuned by online learning. The effectiveness of the proposed ANFIS joint control was verified through a 5-link biped robot simulation. We demonstrated that the designed hierarchical control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance. It is also shown that the further online self-learning capability of the ANFIS controller can markedly improve the dynamic walking performance of the biped robot.","PeriodicalId":437491,"journal":{"name":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Adaptive network based fuzzy control of a dynamic biped walking robot\",\"authors\":\"Changjiu Zhou, K. Jagannathan\",\"doi\":\"10.1109/IJSIS.1996.565058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a adaptive-network-based fuzzy inference system (ANFIS) control strategy based on a hierarchy of walking planning level, gait generating level and joint control level, which do not require detailed kinematics or dynamic biped models. The ANFIS controller, which enhances Sugeno fuzzy controller with self-learning capability from adaptive network, can combine the qualitative knowledge in fuzzy rules and be fine-tuned by online learning. The effectiveness of the proposed ANFIS joint control was verified through a 5-link biped robot simulation. We demonstrated that the designed hierarchical control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance. It is also shown that the further online self-learning capability of the ANFIS controller can markedly improve the dynamic walking performance of the biped robot.\",\"PeriodicalId\":437491,\"journal\":{\"name\":\"Proceedings IEEE International Joint Symposia on Intelligence and Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Joint Symposia on Intelligence and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJSIS.1996.565058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Joint Symposia on Intelligence and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1996.565058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种基于自适应网络的模糊推理系统(ANFIS)控制策略,该策略基于步行规划层、步态生成层和关节控制层的层次结构,不需要详细的两足动物运动学和动力学模型。ANFIS控制器增强了Sugeno模糊控制器的自适应网络自学习能力,可以将模糊规则中的定性知识结合起来,并通过在线学习进行微调。通过五连杆双足机器人仿真验证了所提ANFIS联合控制的有效性。实验结果表明,所设计的分层控制系统可以利用实验输入输出数据对实现双足机器人的动态平衡学习和行走。进一步增强ANFIS控制器的在线自学习能力,可以显著改善两足机器人的动态行走性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive network based fuzzy control of a dynamic biped walking robot
In this paper, we proposed a adaptive-network-based fuzzy inference system (ANFIS) control strategy based on a hierarchy of walking planning level, gait generating level and joint control level, which do not require detailed kinematics or dynamic biped models. The ANFIS controller, which enhances Sugeno fuzzy controller with self-learning capability from adaptive network, can combine the qualitative knowledge in fuzzy rules and be fine-tuned by online learning. The effectiveness of the proposed ANFIS joint control was verified through a 5-link biped robot simulation. We demonstrated that the designed hierarchical control system can use the experimental input-output data pairs for the biped robot learning and walking with dynamic balance. It is also shown that the further online self-learning capability of the ANFIS controller can markedly improve the dynamic walking performance of the biped robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信