局部模型的分散聚集对全局高斯混合的鲁棒估计

Ali El Attar, A. Pigeau, Marc Gelgon
{"title":"局部模型的分散聚集对全局高斯混合的鲁棒估计","authors":"Ali El Attar, A. Pigeau, Marc Gelgon","doi":"10.3233/WIA-130273","DOIUrl":null,"url":null,"abstract":"Distributed data collections are now more and more common due to the emergence of cloud computing, to spatially decentralized businesses, or to the availability of various data sharing web services. Obtain knowledge in such a collection raises then the need of new data mining methods to apply in a decentralized architecture. In this paper, we explore a machine learning side of this work direction. We propose a novel technique for decentralized estimation of probabilistic mixture models, which are among the most versatile generative models for understanding data sets. More precisely, we demonstrate how to estimate a global mixture model from a set of local models. Our approach accommodates dynamic topology and data sources and is statistically robust, i.e. resilient to the presence of unreliable local models. Such outlier models may arise from local data which are outliers, compared to the global trend, or poor mixture estimation. We report experiments on synthetic data and real geo-location data from Flickr.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation of a global Gaussian mixture by decentralized aggregations of local models\",\"authors\":\"Ali El Attar, A. Pigeau, Marc Gelgon\",\"doi\":\"10.3233/WIA-130273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed data collections are now more and more common due to the emergence of cloud computing, to spatially decentralized businesses, or to the availability of various data sharing web services. Obtain knowledge in such a collection raises then the need of new data mining methods to apply in a decentralized architecture. In this paper, we explore a machine learning side of this work direction. We propose a novel technique for decentralized estimation of probabilistic mixture models, which are among the most versatile generative models for understanding data sets. More precisely, we demonstrate how to estimate a global mixture model from a set of local models. Our approach accommodates dynamic topology and data sources and is statistically robust, i.e. resilient to the presence of unreliable local models. Such outlier models may arise from local data which are outliers, compared to the global trend, or poor mixture estimation. We report experiments on synthetic data and real geo-location data from Flickr.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/WIA-130273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-130273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于云计算、空间分散的业务或各种数据共享web服务的出现,分布式数据收集现在变得越来越普遍。在这样的集合中获取知识提出了在分散架构中应用新的数据挖掘方法的需求。在本文中,我们探索了这个工作方向的机器学习方面。我们提出了一种分散估计概率混合模型的新技术,这是理解数据集最通用的生成模型之一。更准确地说,我们演示了如何从一组局部模型估计一个全局混合模型。我们的方法适应动态拓扑和数据源,并且具有统计鲁棒性,即对不可靠的局部模型的存在具有弹性。与全球趋势相比,这种异常值模型可能来自局部数据,这些数据是异常值,或者混合估计不佳。我们报告了来自Flickr的合成数据和真实地理位置数据的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust estimation of a global Gaussian mixture by decentralized aggregations of local models
Distributed data collections are now more and more common due to the emergence of cloud computing, to spatially decentralized businesses, or to the availability of various data sharing web services. Obtain knowledge in such a collection raises then the need of new data mining methods to apply in a decentralized architecture. In this paper, we explore a machine learning side of this work direction. We propose a novel technique for decentralized estimation of probabilistic mixture models, which are among the most versatile generative models for understanding data sets. More precisely, we demonstrate how to estimate a global mixture model from a set of local models. Our approach accommodates dynamic topology and data sources and is statistically robust, i.e. resilient to the presence of unreliable local models. Such outlier models may arise from local data which are outliers, compared to the global trend, or poor mixture estimation. We report experiments on synthetic data and real geo-location data from Flickr.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信