一种链接与内容相结合的信息检索与提炼方法

Y. Liu, M. Liang
{"title":"一种链接与内容相结合的信息检索与提炼方法","authors":"Y. Liu, M. Liang","doi":"10.1109/ICECT.2005.6","DOIUrl":null,"url":null,"abstract":"This paper presents a combined link and content based search method. A content relevance index is proposed to measure information quality. A sliding window model (SWM) is proposed to construct a dynamic graph and control the size of the node set of a graph. An exponential smoothing (ES) approach is applied to guide the search. Experimental results show that the proposed approach with the above features outperforms the link based approaches in terms of both information quality and computing time.","PeriodicalId":312957,"journal":{"name":"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint link and content approach to information retrieval and distillation\",\"authors\":\"Y. Liu, M. Liang\",\"doi\":\"10.1109/ICECT.2005.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a combined link and content based search method. A content relevance index is proposed to measure information quality. A sliding window model (SWM) is proposed to construct a dynamic graph and control the size of the node set of a graph. An exponential smoothing (ES) approach is applied to guide the search. Experimental results show that the proposed approach with the above features outperforms the link based approaches in terms of both information quality and computing time.\",\"PeriodicalId\":312957,\"journal\":{\"name\":\"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECT.2005.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on E-Commerce Technology (CEC'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECT.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于链接和内容的组合搜索方法。提出了一种衡量信息质量的内容相关性指标。提出了一种滑动窗口模型(SWM)来构造动态图并控制图的节点集大小。采用指数平滑(ES)方法指导搜索。实验结果表明,该方法在信息质量和计算时间上都优于基于链路的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A joint link and content approach to information retrieval and distillation
This paper presents a combined link and content based search method. A content relevance index is proposed to measure information quality. A sliding window model (SWM) is proposed to construct a dynamic graph and control the size of the node set of a graph. An exponential smoothing (ES) approach is applied to guide the search. Experimental results show that the proposed approach with the above features outperforms the link based approaches in terms of both information quality and computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信