{"title":"基于腙的开关的最新进展","authors":"Xinyan Su, Huiyun Chen, Qinqin Ma","doi":"10.33552/MCMS.2019.01.000509","DOIUrl":null,"url":null,"abstract":"Molecular switches that can undergo reversible switching between two or more different states in response to chemical, electrochemical or photochemical stimuli, have attracted much attention in recent decades due to their promising applications in chemical sensing, photocontrollable biological process and molecular machines [1,2]. Most prevalent switches, including interlocked molecules, azobenzene, spiropyrans, diarylethenes and fulgides, have been widely investigated and employed for the construction of stimuli responsive systems and materials [2-4].","PeriodicalId":297187,"journal":{"name":"Modern Concepts in Material Science","volume":"462 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Hydrazone-Based Switches\",\"authors\":\"Xinyan Su, Huiyun Chen, Qinqin Ma\",\"doi\":\"10.33552/MCMS.2019.01.000509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular switches that can undergo reversible switching between two or more different states in response to chemical, electrochemical or photochemical stimuli, have attracted much attention in recent decades due to their promising applications in chemical sensing, photocontrollable biological process and molecular machines [1,2]. Most prevalent switches, including interlocked molecules, azobenzene, spiropyrans, diarylethenes and fulgides, have been widely investigated and employed for the construction of stimuli responsive systems and materials [2-4].\",\"PeriodicalId\":297187,\"journal\":{\"name\":\"Modern Concepts in Material Science\",\"volume\":\"462 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Concepts in Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33552/MCMS.2019.01.000509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Concepts in Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33552/MCMS.2019.01.000509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular switches that can undergo reversible switching between two or more different states in response to chemical, electrochemical or photochemical stimuli, have attracted much attention in recent decades due to their promising applications in chemical sensing, photocontrollable biological process and molecular machines [1,2]. Most prevalent switches, including interlocked molecules, azobenzene, spiropyrans, diarylethenes and fulgides, have been widely investigated and employed for the construction of stimuli responsive systems and materials [2-4].