排列积的对称公式

W. He, Benjamin Rossman
{"title":"排列积的对称公式","authors":"W. He, Benjamin Rossman","doi":"10.48550/arXiv.2211.15520","DOIUrl":null,"url":null,"abstract":"We study the formula complexity of the word problem $\\mathsf{Word}_{S_n,k} : \\{0,1\\}^{kn^2} \\to \\{0,1\\}$: given $n$-by-$n$ permutation matrices $M_1,\\dots,M_k$, compute the $(1,1)$-entry of the matrix product $M_1\\cdots M_k$. An important feature of this function is that it is invariant under action of $S_n^{k-1}$ given by \\[ (\\pi_1,\\dots,\\pi_{k-1})(M_1,\\dots,M_k) = (M_1\\pi_1^{-1},\\pi_1M_2\\pi_2^{-1},\\dots,\\pi_{k-2}M_{k-1}\\pi_{k-1}^{-1},\\pi_{k-1}M_k). \\] This symmetry is also exhibited in the smallest known unbounded fan-in $\\{\\mathsf{AND},\\mathsf{OR},\\mathsf{NOT}\\}$-formulas for $\\mathsf{Word}_{S_n,k}$, which have size $n^{O(\\log k)}$. In this paper we prove a matching $n^{\\Omega(\\log k)}$ lower bound for $S_n^{k-1}$-invariant formulas computing $\\mathsf{Word}_{S_n,k}$. This result is motivated by the fact that a similar lower bound for unrestricted (non-invariant) formulas would separate complexity classes $\\mathsf{NC}^1$ and $\\mathsf{Logspace}$. Our more general main theorem gives a nearly tight $n^{d(k^{1/d}-1)}$ lower bound on the $G^{k-1}$-invariant depth-$d$ $\\{\\mathsf{MAJ},\\mathsf{AND},\\mathsf{OR},\\mathsf{NOT}\\}$-formula size of $\\mathsf{Word}_{G,k}$ for any finite simple group $G$ whose minimum permutation representation has degree~$n$. We also give nearly tight lower bounds on the $G^{k-1}$-invariant depth-$d$ $\\{\\mathsf{AND},\\mathsf{OR},\\mathsf{NOT}\\}$-formula size in the case where $G$ is an abelian group.","PeriodicalId":123734,"journal":{"name":"Information Technology Convergence and Services","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Symmetric Formulas for Products of Permutations\",\"authors\":\"W. He, Benjamin Rossman\",\"doi\":\"10.48550/arXiv.2211.15520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the formula complexity of the word problem $\\\\mathsf{Word}_{S_n,k} : \\\\{0,1\\\\}^{kn^2} \\\\to \\\\{0,1\\\\}$: given $n$-by-$n$ permutation matrices $M_1,\\\\dots,M_k$, compute the $(1,1)$-entry of the matrix product $M_1\\\\cdots M_k$. An important feature of this function is that it is invariant under action of $S_n^{k-1}$ given by \\\\[ (\\\\pi_1,\\\\dots,\\\\pi_{k-1})(M_1,\\\\dots,M_k) = (M_1\\\\pi_1^{-1},\\\\pi_1M_2\\\\pi_2^{-1},\\\\dots,\\\\pi_{k-2}M_{k-1}\\\\pi_{k-1}^{-1},\\\\pi_{k-1}M_k). \\\\] This symmetry is also exhibited in the smallest known unbounded fan-in $\\\\{\\\\mathsf{AND},\\\\mathsf{OR},\\\\mathsf{NOT}\\\\}$-formulas for $\\\\mathsf{Word}_{S_n,k}$, which have size $n^{O(\\\\log k)}$. In this paper we prove a matching $n^{\\\\Omega(\\\\log k)}$ lower bound for $S_n^{k-1}$-invariant formulas computing $\\\\mathsf{Word}_{S_n,k}$. This result is motivated by the fact that a similar lower bound for unrestricted (non-invariant) formulas would separate complexity classes $\\\\mathsf{NC}^1$ and $\\\\mathsf{Logspace}$. Our more general main theorem gives a nearly tight $n^{d(k^{1/d}-1)}$ lower bound on the $G^{k-1}$-invariant depth-$d$ $\\\\{\\\\mathsf{MAJ},\\\\mathsf{AND},\\\\mathsf{OR},\\\\mathsf{NOT}\\\\}$-formula size of $\\\\mathsf{Word}_{G,k}$ for any finite simple group $G$ whose minimum permutation representation has degree~$n$. We also give nearly tight lower bounds on the $G^{k-1}$-invariant depth-$d$ $\\\\{\\\\mathsf{AND},\\\\mathsf{OR},\\\\mathsf{NOT}\\\\}$-formula size in the case where $G$ is an abelian group.\",\"PeriodicalId\":123734,\"journal\":{\"name\":\"Information Technology Convergence and Services\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology Convergence and Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.15520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology Convergence and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.15520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了这个问题的公式复杂度 $\mathsf{Word}_{S_n,k} : \{0,1\}^{kn^2} \to \{0,1\}$给定 $n$-by-$n$ 置换矩阵 $M_1,\dots,M_k$,计算 $(1,1)$矩阵乘积的-项 $M_1\cdots M_k$. 这个函数的一个重要特征是它在的作用下是不变的 $S_n^{k-1}$ 由 \[ (\pi_1,\dots,\pi_{k-1})(M_1,\dots,M_k) = (M_1\pi_1^{-1},\pi_1M_2\pi_2^{-1},\dots,\pi_{k-2}M_{k-1}\pi_{k-1}^{-1},\pi_{k-1}M_k). \] 这种对称性在已知最小的无界扇形中也表现出来 $\{\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-公式 $\mathsf{Word}_{S_n,k}$,它们有大小 $n^{O(\log k)}$. 在本文中,我们证明了一个匹配 $n^{\Omega(\log k)}$ 的下界 $S_n^{k-1}$-不变公式计算 $\mathsf{Word}_{S_n,k}$. 这一结果源于这样一个事实,即无限制(非不变)公式的类似下界将分离复杂性类 $\mathsf{NC}^1$ 和 $\mathsf{Logspace}$. 我们更一般的主要定理给出了一个近似紧密的 $n^{d(k^{1/d}-1)}$ 的下界 $G^{k-1}$不变深度$d$ $\{\mathsf{MAJ},\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-公式尺寸 $\mathsf{Word}_{G,k}$ 对于任何有限单群 $G$ 谁的最小排列表示有度 $n$. 我们也给出了近似紧的下界 $G^{k-1}$不变深度$d$ $\{\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-公式的大小 $G$ 是一个阿贝尔群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric Formulas for Products of Permutations
We study the formula complexity of the word problem $\mathsf{Word}_{S_n,k} : \{0,1\}^{kn^2} \to \{0,1\}$: given $n$-by-$n$ permutation matrices $M_1,\dots,M_k$, compute the $(1,1)$-entry of the matrix product $M_1\cdots M_k$. An important feature of this function is that it is invariant under action of $S_n^{k-1}$ given by \[ (\pi_1,\dots,\pi_{k-1})(M_1,\dots,M_k) = (M_1\pi_1^{-1},\pi_1M_2\pi_2^{-1},\dots,\pi_{k-2}M_{k-1}\pi_{k-1}^{-1},\pi_{k-1}M_k). \] This symmetry is also exhibited in the smallest known unbounded fan-in $\{\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-formulas for $\mathsf{Word}_{S_n,k}$, which have size $n^{O(\log k)}$. In this paper we prove a matching $n^{\Omega(\log k)}$ lower bound for $S_n^{k-1}$-invariant formulas computing $\mathsf{Word}_{S_n,k}$. This result is motivated by the fact that a similar lower bound for unrestricted (non-invariant) formulas would separate complexity classes $\mathsf{NC}^1$ and $\mathsf{Logspace}$. Our more general main theorem gives a nearly tight $n^{d(k^{1/d}-1)}$ lower bound on the $G^{k-1}$-invariant depth-$d$ $\{\mathsf{MAJ},\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-formula size of $\mathsf{Word}_{G,k}$ for any finite simple group $G$ whose minimum permutation representation has degree~$n$. We also give nearly tight lower bounds on the $G^{k-1}$-invariant depth-$d$ $\{\mathsf{AND},\mathsf{OR},\mathsf{NOT}\}$-formula size in the case where $G$ is an abelian group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信