通过一深度中间证明的一类并行λ演算

Federico Aschieri, A. Ciabattoni, Francesco A. Genco
{"title":"通过一深度中间证明的一类并行λ演算","authors":"Federico Aschieri, A. Ciabattoni, Francesco A. Genco","doi":"10.29007/g15z","DOIUrl":null,"url":null,"abstract":"We introduce a Curry-Howard correspondence for a large class of intermediate logics characterized by intuitionistic proofs with non-nested applications of rules for classical disjunctive tautologies (1-depth intermediate proofs). The resulting calculus, we call it $\\lambda_{\\parallel}$, is a strongly normalizing parallel extension of the simply typed $\\lambda$-calculus. Although simple, the $\\lambda_{\\parallel}$ reduction rules can model arbitrary process network topologies, and encode interesting parallel programs ranging from numeric computation to algorithms on graphs.","PeriodicalId":207621,"journal":{"name":"Logic Programming and Automated Reasoning","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A typed parallel lambda-calculus via 1-depth intermediate proofs\",\"authors\":\"Federico Aschieri, A. Ciabattoni, Francesco A. Genco\",\"doi\":\"10.29007/g15z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Curry-Howard correspondence for a large class of intermediate logics characterized by intuitionistic proofs with non-nested applications of rules for classical disjunctive tautologies (1-depth intermediate proofs). The resulting calculus, we call it $\\\\lambda_{\\\\parallel}$, is a strongly normalizing parallel extension of the simply typed $\\\\lambda$-calculus. Although simple, the $\\\\lambda_{\\\\parallel}$ reduction rules can model arbitrary process network topologies, and encode interesting parallel programs ranging from numeric computation to algorithms on graphs.\",\"PeriodicalId\":207621,\"journal\":{\"name\":\"Logic Programming and Automated Reasoning\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Programming and Automated Reasoning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/g15z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Programming and Automated Reasoning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/g15z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为一类以经典析取重言式规则的非嵌套应用的直觉证明为特征的中间逻辑(1-深度中间证明)引入了Curry-Howard对应。由此产生的演算,我们称之为$\lambda_{\parallel}$,是简单类型的$\lambda$-演算的强规范化并行扩展。虽然简单,但$\lambda_{\parallel}$约简规则可以对任意过程网络拓扑进行建模,并编码从数值计算到图上算法的有趣并行程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A typed parallel lambda-calculus via 1-depth intermediate proofs
We introduce a Curry-Howard correspondence for a large class of intermediate logics characterized by intuitionistic proofs with non-nested applications of rules for classical disjunctive tautologies (1-depth intermediate proofs). The resulting calculus, we call it $\lambda_{\parallel}$, is a strongly normalizing parallel extension of the simply typed $\lambda$-calculus. Although simple, the $\lambda_{\parallel}$ reduction rules can model arbitrary process network topologies, and encode interesting parallel programs ranging from numeric computation to algorithms on graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信