用于人体运动识别的3d骨骼数据预处理与归一化

Jan P. Vox, F. Wallhoff
{"title":"用于人体运动识别的3d骨骼数据预处理与归一化","authors":"Jan P. Vox, F. Wallhoff","doi":"10.1109/LSC.2018.8572153","DOIUrl":null,"url":null,"abstract":"One key task for motion recognition using machine learning algorithms is the preprocessing of the input data. In this work 3D-skeleton-data is used to classify 19 motion exercises. Due to different body shapes and deviations in the movements from different subjects it becomes necessary to normalize the data. This work addresses the normalization of 3D-skeletoD-data by indicating body joint angles and normalization to an independent coordinate system. The recogntion is based on a Support Vector Machine (SVM) and is evaluated on a dataset containing examples from 21 subjects. The recognition accuracies using different normalized feature combinations are examined. The authors conclude that joint angles are best suitable for the recognition of motion exercises.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Preprocessing and Normalization of 3D-Skeleton-Data for Human Motion Recognition\",\"authors\":\"Jan P. Vox, F. Wallhoff\",\"doi\":\"10.1109/LSC.2018.8572153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One key task for motion recognition using machine learning algorithms is the preprocessing of the input data. In this work 3D-skeleton-data is used to classify 19 motion exercises. Due to different body shapes and deviations in the movements from different subjects it becomes necessary to normalize the data. This work addresses the normalization of 3D-skeletoD-data by indicating body joint angles and normalization to an independent coordinate system. The recogntion is based on a Support Vector Machine (SVM) and is evaluated on a dataset containing examples from 21 subjects. The recognition accuracies using different normalized feature combinations are examined. The authors conclude that joint angles are best suitable for the recognition of motion exercises.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

使用机器学习算法进行运动识别的一个关键任务是对输入数据进行预处理。在这项工作中,3d骨骼数据被用于分类19种运动练习。由于不同受试者的身体形状和运动偏差不同,有必要对数据进行规范化。这项工作通过指示身体关节角度和归一化到独立的坐标系来解决3d - skeleton -data的归一化问题。该识别基于支持向量机(SVM),并在包含21个主题的示例的数据集上进行评估。研究了不同归一化特征组合的识别精度。作者得出结论,关节角度最适合运动识别练习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preprocessing and Normalization of 3D-Skeleton-Data for Human Motion Recognition
One key task for motion recognition using machine learning algorithms is the preprocessing of the input data. In this work 3D-skeleton-data is used to classify 19 motion exercises. Due to different body shapes and deviations in the movements from different subjects it becomes necessary to normalize the data. This work addresses the normalization of 3D-skeletoD-data by indicating body joint angles and normalization to an independent coordinate system. The recogntion is based on a Support Vector Machine (SVM) and is evaluated on a dataset containing examples from 21 subjects. The recognition accuracies using different normalized feature combinations are examined. The authors conclude that joint angles are best suitable for the recognition of motion exercises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信