{"title":"自仿集","authors":"A. Kaenmaki","doi":"10.1017/9781108778459.009","DOIUrl":null,"url":null,"abstract":". In this paper we consider diagonally affine, planar IFS Φ = { S i ( x,y )=( α i x + t i, 1 ,β i y + t i, 2 ) } mi =1 . Combining the techniques of Hochman and Feng and Hu, we compute the Hausdorff dimension of the self-affine attractor and measures and we give an upper bound for the dimension of the exceptional set of parameters.","PeriodicalId":385815,"journal":{"name":"Assouad Dimension and Fractal Geometry","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Affine Sets\",\"authors\":\"A. Kaenmaki\",\"doi\":\"10.1017/9781108778459.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper we consider diagonally affine, planar IFS Φ = { S i ( x,y )=( α i x + t i, 1 ,β i y + t i, 2 ) } mi =1 . Combining the techniques of Hochman and Feng and Hu, we compute the Hausdorff dimension of the self-affine attractor and measures and we give an upper bound for the dimension of the exceptional set of parameters.\",\"PeriodicalId\":385815,\"journal\":{\"name\":\"Assouad Dimension and Fractal Geometry\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Assouad Dimension and Fractal Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108778459.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assouad Dimension and Fractal Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108778459.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
。本文考虑对角仿射平面IFS Φ = {S i (x,y)=(α i x + t i, 1,β i y + t i, 2)} mi =1。结合Hochman、Feng和Hu的方法,我们计算了自仿射吸引子的Hausdorff维数和测度,并给出了异常参数集维数的上界。
. In this paper we consider diagonally affine, planar IFS Φ = { S i ( x,y )=( α i x + t i, 1 ,β i y + t i, 2 ) } mi =1 . Combining the techniques of Hochman and Feng and Hu, we compute the Hausdorff dimension of the self-affine attractor and measures and we give an upper bound for the dimension of the exceptional set of parameters.