高维选择后推理的多重分割

Christoph Schultheiss, Claude Renaux, Peter Buhlmann
{"title":"高维选择后推理的多重分割","authors":"Christoph Schultheiss, Claude Renaux, Peter Buhlmann","doi":"10.1214/21-EJS1825","DOIUrl":null,"url":null,"abstract":"We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting, to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multicarving for high-dimensional post-selection inference\",\"authors\":\"Christoph Schultheiss, Claude Renaux, Peter Buhlmann\",\"doi\":\"10.1214/21-EJS1825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting, to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-EJS1825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-EJS1825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑高维(广义)线性模型的后选择推理。数据雕刻(Fithian et al., 2014)是执行此任务的一种有前途的技术。然而,它受到模型选择器的不稳定性的影响,因此可能导致较差的可复制性,特别是在高维设置中。我们提出了受多重分裂启发的多重曲线方法,以提高稳定性和可复制性。此外,我们将现有的概念扩展到群推理,并说明该方法也适用于广义线性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicarving for high-dimensional post-selection inference
We consider post-selection inference for high-dimensional (generalized) linear models. Data carving (Fithian et al., 2014) is a promising technique to perform this task. However, it suffers from the instability of the model selector and hence may lead to poor replicability, especially in high-dimensional settings. We propose the multicarve method inspired by multisplitting, to improve upon stability and replicability. Furthermore, we extend existing concepts to group inference and illustrate the applicability of the methodology also for generalized linear models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信