基于深度神经网络的生物医学文献蛋白质相互作用提取

Zhehuan Zhao, Zhihao Yang, Ling Luo, Hongfei Lin, Jian Wang, Song Gao
{"title":"基于深度神经网络的生物医学文献蛋白质相互作用提取","authors":"Zhehuan Zhao, Zhihao Yang, Ling Luo, Hongfei Lin, Jian Wang, Song Gao","doi":"10.1109/BIBM.2015.7359845","DOIUrl":null,"url":null,"abstract":"This paper presents a deep neural network-based protein-protein interactions (PPIs) information extraction approach which can learn complex and abstract features automatically from unlabeled data by unsupervised representation learning methods. This approach first employs the training algorithm of auto-encoders to initialize the parameters of a deep multilayer neural network. Then the gradient descent method using back-propagation is applied to train this deep multilayer neural network model. Experimental results on five public PPI corpora show that our method can achieve better performance than can a multilayer neural network. In addition, the performance comparison with APG also verifies the effectiveness of our method.","PeriodicalId":186217,"journal":{"name":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep neural network based protein-protein interaction extraction from biomedical literature\",\"authors\":\"Zhehuan Zhao, Zhihao Yang, Ling Luo, Hongfei Lin, Jian Wang, Song Gao\",\"doi\":\"10.1109/BIBM.2015.7359845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep neural network-based protein-protein interactions (PPIs) information extraction approach which can learn complex and abstract features automatically from unlabeled data by unsupervised representation learning methods. This approach first employs the training algorithm of auto-encoders to initialize the parameters of a deep multilayer neural network. Then the gradient descent method using back-propagation is applied to train this deep multilayer neural network model. Experimental results on five public PPI corpora show that our method can achieve better performance than can a multilayer neural network. In addition, the performance comparison with APG also verifies the effectiveness of our method.\",\"PeriodicalId\":186217,\"journal\":{\"name\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2015.7359845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2015.7359845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于深度神经网络的蛋白质-蛋白质相互作用(PPIs)信息提取方法,该方法可以通过无监督表示学习方法从未标记数据中自动学习复杂和抽象的特征。该方法首先利用自编码器的训练算法对深度多层神经网络的参数进行初始化。然后利用反向传播的梯度下降法对深度多层神经网络模型进行训练。在5个公开的PPI语料库上的实验结果表明,该方法比多层神经网络具有更好的性能。此外,与APG的性能比较也验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network based protein-protein interaction extraction from biomedical literature
This paper presents a deep neural network-based protein-protein interactions (PPIs) information extraction approach which can learn complex and abstract features automatically from unlabeled data by unsupervised representation learning methods. This approach first employs the training algorithm of auto-encoders to initialize the parameters of a deep multilayer neural network. Then the gradient descent method using back-propagation is applied to train this deep multilayer neural network model. Experimental results on five public PPI corpora show that our method can achieve better performance than can a multilayer neural network. In addition, the performance comparison with APG also verifies the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信