面部情绪识别的多层次分类方法

Dev Drume, A. S. Jalal
{"title":"面部情绪识别的多层次分类方法","authors":"Dev Drume, A. S. Jalal","doi":"10.1109/ICCIC.2012.6510279","DOIUrl":null,"url":null,"abstract":"Recognition of facial expressions and infer emotions from them is become increasingly relevant in many commercial and law enforcement applications. In this paper, we present a multi-level classification approach for human emotion recognition from facial images. In the proposed approach, the classification accuracy of principal component analysis (PCA) at level 1 is boosted by Support Vector Machines (SVMs) at level 2. Experimental results demonstrate that the proposed approach can successfully recognize facial emotion with 94% recognition rate.","PeriodicalId":340238,"journal":{"name":"2012 IEEE International Conference on Computational Intelligence and Computing Research","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A multi-level classification approach for facial emotion recognition\",\"authors\":\"Dev Drume, A. S. Jalal\",\"doi\":\"10.1109/ICCIC.2012.6510279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of facial expressions and infer emotions from them is become increasingly relevant in many commercial and law enforcement applications. In this paper, we present a multi-level classification approach for human emotion recognition from facial images. In the proposed approach, the classification accuracy of principal component analysis (PCA) at level 1 is boosted by Support Vector Machines (SVMs) at level 2. Experimental results demonstrate that the proposed approach can successfully recognize facial emotion with 94% recognition rate.\",\"PeriodicalId\":340238,\"journal\":{\"name\":\"2012 IEEE International Conference on Computational Intelligence and Computing Research\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computational Intelligence and Computing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIC.2012.6510279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2012.6510279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

识别面部表情并从中推断情绪在许多商业和执法应用中变得越来越重要。本文提出了一种基于人脸图像的多层次情感识别方法。在该方法中,主成分分析(PCA)在第1层的分类精度被支持向量机(svm)在第2层提高。实验结果表明,该方法可以成功识别面部情绪,识别率达到94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-level classification approach for facial emotion recognition
Recognition of facial expressions and infer emotions from them is become increasingly relevant in many commercial and law enforcement applications. In this paper, we present a multi-level classification approach for human emotion recognition from facial images. In the proposed approach, the classification accuracy of principal component analysis (PCA) at level 1 is boosted by Support Vector Machines (SVMs) at level 2. Experimental results demonstrate that the proposed approach can successfully recognize facial emotion with 94% recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信