ATRNN:用Seq2Seq方法解码极性码

Aniket Dhok, Swapnil Bhole
{"title":"ATRNN:用Seq2Seq方法解码极性码","authors":"Aniket Dhok, Swapnil Bhole","doi":"10.1109/COMSNETS48256.2020.9027355","DOIUrl":null,"url":null,"abstract":"Polar codes have been chosen by 3GPP as the official error-correcting codes in the control plane of 5G NR enhanced Mobile Broadband (eMBB) due to their low complexity decoding and near-DMC capacity achievement. Recently, deep learning methods have produced promising results in many fields, including linear and polar code decoding. Using end-to-end DL approach provides flexibility, thus empowering us to integrate powerful DL algorithms into channel decoders. In this paper, we propose a novel one-shot decoding framework for polar codes using Attention-based Recurrent Neural Network (ATRNN). Furthermore, we evaluate the decoding performance of ATRNN using bit error rate (BER) and compare it with the state-of-the-art techniques such as successive cancellation (SC).","PeriodicalId":265871,"journal":{"name":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ATRNN: Using Seq2Seq Approach for Decoding Polar Codes\",\"authors\":\"Aniket Dhok, Swapnil Bhole\",\"doi\":\"10.1109/COMSNETS48256.2020.9027355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polar codes have been chosen by 3GPP as the official error-correcting codes in the control plane of 5G NR enhanced Mobile Broadband (eMBB) due to their low complexity decoding and near-DMC capacity achievement. Recently, deep learning methods have produced promising results in many fields, including linear and polar code decoding. Using end-to-end DL approach provides flexibility, thus empowering us to integrate powerful DL algorithms into channel decoders. In this paper, we propose a novel one-shot decoding framework for polar codes using Attention-based Recurrent Neural Network (ATRNN). Furthermore, we evaluate the decoding performance of ATRNN using bit error rate (BER) and compare it with the state-of-the-art techniques such as successive cancellation (SC).\",\"PeriodicalId\":265871,\"journal\":{\"name\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS48256.2020.9027355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS48256.2020.9027355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Polar码因其解码复杂度低、容量接近dmc,已被3GPP选择为5G NR增强型移动宽带(eMBB)控制平面的官方纠错码。最近,深度学习方法在许多领域产生了有希望的结果,包括线性和极码解码。使用端到端DL方法提供了灵活性,从而使我们能够将强大的DL算法集成到信道解码器中。本文提出了一种基于注意的递归神经网络(ATRNN)的极码单次解码框架。此外,我们使用误码率(BER)评估了ATRNN的解码性能,并将其与最先进的技术(如连续抵消(SC))进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATRNN: Using Seq2Seq Approach for Decoding Polar Codes
Polar codes have been chosen by 3GPP as the official error-correcting codes in the control plane of 5G NR enhanced Mobile Broadband (eMBB) due to their low complexity decoding and near-DMC capacity achievement. Recently, deep learning methods have produced promising results in many fields, including linear and polar code decoding. Using end-to-end DL approach provides flexibility, thus empowering us to integrate powerful DL algorithms into channel decoders. In this paper, we propose a novel one-shot decoding framework for polar codes using Attention-based Recurrent Neural Network (ATRNN). Furthermore, we evaluate the decoding performance of ATRNN using bit error rate (BER) and compare it with the state-of-the-art techniques such as successive cancellation (SC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信