{"title":"基于SDSS和2MASS的两种光度红移估计新方法","authors":"Danial Q. Wang, Yan-Xia Zhang, Chao Liu, Yong-heng Zhao","doi":"10.1088/1009-9271/8/1/13","DOIUrl":null,"url":null,"abstract":"We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.","PeriodicalId":124495,"journal":{"name":"Chinese Journal of Astronomy and Astrophysics","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS\",\"authors\":\"Danial Q. Wang, Yan-Xia Zhang, Chao Liu, Yong-heng Zhao\",\"doi\":\"10.1088/1009-9271/8/1/13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.\",\"PeriodicalId\":124495,\"journal\":{\"name\":\"Chinese Journal of Astronomy and Astrophysics\",\"volume\":\"433 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1009-9271/8/1/13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1009-9271/8/1/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS
We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.