基于SDSS和2MASS的两种光度红移估计新方法

Danial Q. Wang, Yan-Xia Zhang, Chao Liu, Yong-heng Zhao
{"title":"基于SDSS和2MASS的两种光度红移估计新方法","authors":"Danial Q. Wang, Yan-Xia Zhang, Chao Liu, Yong-heng Zhao","doi":"10.1088/1009-9271/8/1/13","DOIUrl":null,"url":null,"abstract":"We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.","PeriodicalId":124495,"journal":{"name":"Chinese Journal of Astronomy and Astrophysics","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS\",\"authors\":\"Danial Q. Wang, Yan-Xia Zhang, Chao Liu, Yong-heng Zhao\",\"doi\":\"10.1088/1009-9271/8/1/13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.\",\"PeriodicalId\":124495,\"journal\":{\"name\":\"Chinese Journal of Astronomy and Astrophysics\",\"volume\":\"433 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Astronomy and Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1009-9271/8/1/13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Astronomy and Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1009-9271/8/1/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

利用Sloan数字巡天数据第5版和two Micron全巡天数据库的数据,研究了支持向量机(svm)和核回归(KR)两种训练集方法在光度红移估计中的应用。我们探讨了svm和KR在不同输入模式下的性能。我们的实验表明,当考虑更多的参数时,精度并不总是提高的,只有选择合适的参数才能提高精度。对于不同的方法,最佳输入模式是不同的。当输入参数不同时,KR方法的最优带宽不同,基于SVM和KR方法的光度红移均方根误差分别小于0.03和0.02。总结了两种方法的优缺点。与其他估算光度红移的方法相比,它们在精度方面显示出优势,特别是KR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS
We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信