$RCD (K, \infty)$度量空间中Bakry-Émery条件和Wasserstein热流收缩的改进

Giuseppe Savaré
{"title":"$RCD (K, \\infty)$度量空间中Bakry-Émery条件和Wasserstein热流收缩的改进","authors":"Giuseppe Savaré","doi":"10.3934/dcds.2014.34.1641","DOIUrl":null,"url":null,"abstract":"We prove that the linear ``heat'' flow in a $RCD (K, \\infty)$ metric \n measure space $(X, d, m)$ satisfies a contraction property \n with respect to every $L^p$-Kantorovich-Rubinstein-Wasserstein \n distance, \n $p\\in [1,\\infty]$. In particular, we obtain a precise estimate for the optimal \n $W_\\infty$-coupling between two fundamental solutions \n in terms of the distance of the initial points. \n The result is a consequence of the equivalence between \n the $RCD (K, \\infty)$ lower Ricci bound and the \n corresponding Bakry-Emery condition \n for the canonical Cheeger-Dirichlet form in $(X, d, m)$. \n The crucial tool is the extension to the non-smooth metric measure \n setting of the Bakry's argument, that allows to improve \n the commutation estimates between the Markov semigroup and \n the Carre du Champ $\\Gamma$ associated to the Dirichlet form. \n This extension is based on a new a priori estimate and a capacitary \n argument for regular and tight Dirichlet forms that are of \n independent interest.","PeriodicalId":411750,"journal":{"name":"Discrete & Continuous Dynamical Systems - A","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"175","resultStr":"{\"title\":\"Self-improvement of the Bakry-Émery condition and\\n Wasserstein contraction of the heat flow in\\n $RCD (K, \\\\infty)$ metric measure spaces\",\"authors\":\"Giuseppe Savaré\",\"doi\":\"10.3934/dcds.2014.34.1641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the linear ``heat'' flow in a $RCD (K, \\\\infty)$ metric \\n measure space $(X, d, m)$ satisfies a contraction property \\n with respect to every $L^p$-Kantorovich-Rubinstein-Wasserstein \\n distance, \\n $p\\\\in [1,\\\\infty]$. In particular, we obtain a precise estimate for the optimal \\n $W_\\\\infty$-coupling between two fundamental solutions \\n in terms of the distance of the initial points. \\n The result is a consequence of the equivalence between \\n the $RCD (K, \\\\infty)$ lower Ricci bound and the \\n corresponding Bakry-Emery condition \\n for the canonical Cheeger-Dirichlet form in $(X, d, m)$. \\n The crucial tool is the extension to the non-smooth metric measure \\n setting of the Bakry's argument, that allows to improve \\n the commutation estimates between the Markov semigroup and \\n the Carre du Champ $\\\\Gamma$ associated to the Dirichlet form. \\n This extension is based on a new a priori estimate and a capacitary \\n argument for regular and tight Dirichlet forms that are of \\n independent interest.\",\"PeriodicalId\":411750,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - A\",\"volume\":\"433 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"175\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2014.34.1641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2014.34.1641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 175

摘要

我们证明了$RCD (K, \infty)$度量空间$(X, d, m)$中的线性“热流”对每一个$L^p$ -Kantorovich-Rubinstein-Wasserstein距离$p\in [1,\infty]$都满足收缩性质。特别地,我们根据初始点的距离获得了两个基本解之间最优$W_\infty$ -耦合的精确估计。该结果是$(X, d, m)$中规范Cheeger-Dirichlet形式的$RCD (K, \infty)$下Ricci界与相应的Bakry-Emery条件等价的结果。关键的工具是对Bakry论证的非光滑度量设置的扩展,它允许改进与Dirichlet形式相关的Markov半群和Carre du Champ $\Gamma$之间的交换估计。这个扩展是基于一个新的先验估计和一个独立的正则和紧狄利克雷形式的容量论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces
We prove that the linear ``heat'' flow in a $RCD (K, \infty)$ metric measure space $(X, d, m)$ satisfies a contraction property with respect to every $L^p$-Kantorovich-Rubinstein-Wasserstein distance, $p\in [1,\infty]$. In particular, we obtain a precise estimate for the optimal $W_\infty$-coupling between two fundamental solutions in terms of the distance of the initial points. The result is a consequence of the equivalence between the $RCD (K, \infty)$ lower Ricci bound and the corresponding Bakry-Emery condition for the canonical Cheeger-Dirichlet form in $(X, d, m)$. The crucial tool is the extension to the non-smooth metric measure setting of the Bakry's argument, that allows to improve the commutation estimates between the Markov semigroup and the Carre du Champ $\Gamma$ associated to the Dirichlet form. This extension is based on a new a priori estimate and a capacitary argument for regular and tight Dirichlet forms that are of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信