递归动态可计算一般均衡模型的静态和动态收敛:一种简化方法的提出及其在GAMS中的应用

Rodrigue Tchoffo
{"title":"递归动态可计算一般均衡模型的静态和动态收敛:一种简化方法的提出及其在GAMS中的应用","authors":"Rodrigue Tchoffo","doi":"10.57017/jorit.v1.1(1).06","DOIUrl":null,"url":null,"abstract":"This study proposes a new simplified technique allowing to pass from the static to the\n dynamic framework of computable general equilibrium models (CGEM). Emphasis is placed on the\n treatment of convergence which can be constant or variable. We show that in convergence with\n variable coefficient, the definition of an adjustment parameter is necessary and makes it\n possible to operate the right choice of the values which correspond to the studied economy.\n","PeriodicalId":165708,"journal":{"name":"Journal of Research, Innovation and Technologies (JoRIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static and Dynamic Convergence in a Recursive Dynamic Computable General Equilibrium Model:\\n Proposal of a Simplified Approach and Application in GAMS\",\"authors\":\"Rodrigue Tchoffo\",\"doi\":\"10.57017/jorit.v1.1(1).06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a new simplified technique allowing to pass from the static to the\\n dynamic framework of computable general equilibrium models (CGEM). Emphasis is placed on the\\n treatment of convergence which can be constant or variable. We show that in convergence with\\n variable coefficient, the definition of an adjustment parameter is necessary and makes it\\n possible to operate the right choice of the values which correspond to the studied economy.\\n\",\"PeriodicalId\":165708,\"journal\":{\"name\":\"Journal of Research, Innovation and Technologies (JoRIT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research, Innovation and Technologies (JoRIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57017/jorit.v1.1(1).06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research, Innovation and Technologies (JoRIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57017/jorit.v1.1(1).06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的简化技术,允许从静态过渡到可计算一般均衡模型(CGEM)的动态框架。重点放在收敛性的处理上,收敛性可以是恒定的,也可以是可变的。我们证明了在变系数收敛中,调整参数的定义是必要的,这使得正确选择与所研究的经济相对应的值成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static and Dynamic Convergence in a Recursive Dynamic Computable General Equilibrium Model: Proposal of a Simplified Approach and Application in GAMS
This study proposes a new simplified technique allowing to pass from the static to the dynamic framework of computable general equilibrium models (CGEM). Emphasis is placed on the treatment of convergence which can be constant or variable. We show that in convergence with variable coefficient, the definition of an adjustment parameter is necessary and makes it possible to operate the right choice of the values which correspond to the studied economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信