基于CNN的混合噪声分类与抑制

R. Baardman
{"title":"基于CNN的混合噪声分类与抑制","authors":"R. Baardman","doi":"10.3997/2214-4609.201803017","DOIUrl":null,"url":null,"abstract":"In this abstract a novel machine learning deblending algorithm is introduced. The method uses a convolutional neural netork (CNN) to classify data patches in a \"blended\" and a \"non-blended\" class. A second, regression based, CNN deblends the \"blended\" patches. Results are shown for a synthetic data example.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification And Suppression Of Blending Noise Using CNN\",\"authors\":\"R. Baardman\",\"doi\":\"10.3997/2214-4609.201803017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this abstract a novel machine learning deblending algorithm is introduced. The method uses a convolutional neural netork (CNN) to classify data patches in a \\\"blended\\\" and a \\\"non-blended\\\" class. A second, regression based, CNN deblends the \\\"blended\\\" patches. Results are shown for a synthetic data example.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"270 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种新的机器学习解混算法。该方法使用卷积神经网络(CNN)将数据块分为“混合”和“非混合”两类。第二种是基于回归的,CNN对“混合”补丁进行了分解。给出了一个合成数据示例的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification And Suppression Of Blending Noise Using CNN
In this abstract a novel machine learning deblending algorithm is introduced. The method uses a convolutional neural netork (CNN) to classify data patches in a "blended" and a "non-blended" class. A second, regression based, CNN deblends the "blended" patches. Results are shown for a synthetic data example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信