测量无监督的选择性搜索索引分区的有效性

Yubin Kim, Jamie Callan
{"title":"测量无监督的选择性搜索索引分区的有效性","authors":"Yubin Kim, Jamie Callan","doi":"10.1145/3234944.3234952","DOIUrl":null,"url":null,"abstract":"Selective search architectures partition a document collection into topic-oriented index shards, usually using algorithms that have random components. Different mappings of documents into index shards (shard maps) produce different search accuracy and consistency, however identifying which shard maps will deliver the highest average effectiveness is an open problem. This paper presents a new metric, Area Under Recall Curve (AUReC), to evaluate and compare shard maps. AUReC is the first such metric that is independent of resource selection and shard cut-off estimation. It does not require an end-to-end evaluation or manual gold-standard judgements. Experiments show that its predictions are highly-correlated with evaluating end-to-end systems of various configurations, while being easier to implement and computationally inexpensive.","PeriodicalId":193631,"journal":{"name":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Effectiveness of Selective Search Index Partitions without Supervision\",\"authors\":\"Yubin Kim, Jamie Callan\",\"doi\":\"10.1145/3234944.3234952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selective search architectures partition a document collection into topic-oriented index shards, usually using algorithms that have random components. Different mappings of documents into index shards (shard maps) produce different search accuracy and consistency, however identifying which shard maps will deliver the highest average effectiveness is an open problem. This paper presents a new metric, Area Under Recall Curve (AUReC), to evaluate and compare shard maps. AUReC is the first such metric that is independent of resource selection and shard cut-off estimation. It does not require an end-to-end evaluation or manual gold-standard judgements. Experiments show that its predictions are highly-correlated with evaluating end-to-end systems of various configurations, while being easier to implement and computationally inexpensive.\",\"PeriodicalId\":193631,\"journal\":{\"name\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3234944.3234952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3234944.3234952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

选择性搜索架构将文档集合划分为面向主题的索引分片,通常使用具有随机组件的算法。文档到索引碎片的不同映射(碎片映射)产生不同的搜索准确性和一致性,但是确定哪些碎片映射将提供最高的平均效率是一个开放的问题。本文提出了一个新的度量,召回曲线下面积(Area Under Recall Curve, AUReC),用来评价和比较碎片映射。AUReC是第一个独立于资源选择和切分截止估计的度量。它不需要端到端评估或人工黄金标准判断。实验表明,它的预测与评估各种配置的端到端系统高度相关,同时更容易实现且计算成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the Effectiveness of Selective Search Index Partitions without Supervision
Selective search architectures partition a document collection into topic-oriented index shards, usually using algorithms that have random components. Different mappings of documents into index shards (shard maps) produce different search accuracy and consistency, however identifying which shard maps will deliver the highest average effectiveness is an open problem. This paper presents a new metric, Area Under Recall Curve (AUReC), to evaluate and compare shard maps. AUReC is the first such metric that is independent of resource selection and shard cut-off estimation. It does not require an end-to-end evaluation or manual gold-standard judgements. Experiments show that its predictions are highly-correlated with evaluating end-to-end systems of various configurations, while being easier to implement and computationally inexpensive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信