一种模糊调谐自适应卡尔曼滤波器

Y. Lho, J. Painter
{"title":"一种模糊调谐自适应卡尔曼滤波器","authors":"Y. Lho, J. Painter","doi":"10.1109/IFIS.1993.324197","DOIUrl":null,"url":null,"abstract":"In this paper, fuzzy processing is applied to the adaptive Kalman filter. The filter gain coefficients are adapted over a 50 dB range of unknown signal/noise dynamics, using fuzzy membership functions. Specific simulation results are shown for a dynamic system model which has position-velocity states, as in vehicle tracking applications such as the global positioning system (GPS). The filter is single-input single-output, driven by measurements of position, corrupted by additive (Gaussian) noise. The fuzzy adaptation technique is also applicable to multiple-input multiple-output applications for the cases where the states are higher-order moments of motion. The fuzzy processing is driven by an inaccurate online estimate of signal-to-noise ratio for the signal being tracked. A robust Bayes scheme calculates the filter gain coefficients from the signal-to-noise estimate. In our implementation, the inaccurate signal-to-noise estimate is corrected by the use of fuzzy membership functions. Performance comparisons are given between optimum, fuzzy-tuned adaptive, and fixed-gain Kalman filters for the second-order position-velocity model.<<ETX>>","PeriodicalId":408138,"journal":{"name":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A fuzzy-tuned adaptive Kalman filter\",\"authors\":\"Y. Lho, J. Painter\",\"doi\":\"10.1109/IFIS.1993.324197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, fuzzy processing is applied to the adaptive Kalman filter. The filter gain coefficients are adapted over a 50 dB range of unknown signal/noise dynamics, using fuzzy membership functions. Specific simulation results are shown for a dynamic system model which has position-velocity states, as in vehicle tracking applications such as the global positioning system (GPS). The filter is single-input single-output, driven by measurements of position, corrupted by additive (Gaussian) noise. The fuzzy adaptation technique is also applicable to multiple-input multiple-output applications for the cases where the states are higher-order moments of motion. The fuzzy processing is driven by an inaccurate online estimate of signal-to-noise ratio for the signal being tracked. A robust Bayes scheme calculates the filter gain coefficients from the signal-to-noise estimate. In our implementation, the inaccurate signal-to-noise estimate is corrected by the use of fuzzy membership functions. Performance comparisons are given between optimum, fuzzy-tuned adaptive, and fixed-gain Kalman filters for the second-order position-velocity model.<<ETX>>\",\"PeriodicalId\":408138,\"journal\":{\"name\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Industrial Fuzzy Control and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IFIS.1993.324197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Industrial Fuzzy Control and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFIS.1993.324197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文将模糊处理应用于自适应卡尔曼滤波。使用模糊隶属函数,滤波器增益系数在50 dB范围内适应未知信号/噪声动态。具体的仿真结果显示了一个动态系统模型具有位置-速度状态,如在车辆跟踪应用,如全球定位系统(GPS)。该滤波器是单输入单输出,由位置测量驱动,被加性(高斯)噪声破坏。对于状态为高阶运动矩的多输入多输出应用,模糊自适应技术同样适用。模糊处理是由被跟踪信号的不准确的信噪比在线估计驱动的。鲁棒贝叶斯方案计算从信噪比估计滤波器增益系数。在我们的实现中,通过使用模糊隶属函数来纠正不准确的信噪比估计。给出了二阶位置-速度模型的最优、模糊调谐自适应和固定增益卡尔曼滤波器的性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy-tuned adaptive Kalman filter
In this paper, fuzzy processing is applied to the adaptive Kalman filter. The filter gain coefficients are adapted over a 50 dB range of unknown signal/noise dynamics, using fuzzy membership functions. Specific simulation results are shown for a dynamic system model which has position-velocity states, as in vehicle tracking applications such as the global positioning system (GPS). The filter is single-input single-output, driven by measurements of position, corrupted by additive (Gaussian) noise. The fuzzy adaptation technique is also applicable to multiple-input multiple-output applications for the cases where the states are higher-order moments of motion. The fuzzy processing is driven by an inaccurate online estimate of signal-to-noise ratio for the signal being tracked. A robust Bayes scheme calculates the filter gain coefficients from the signal-to-noise estimate. In our implementation, the inaccurate signal-to-noise estimate is corrected by the use of fuzzy membership functions. Performance comparisons are given between optimum, fuzzy-tuned adaptive, and fixed-gain Kalman filters for the second-order position-velocity model.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信