泰卢固语词性标注与数据驱动依存关系分析实验

M. H. Khanam, Palli Suryachandra, K. Madhumurthy
{"title":"泰卢固语词性标注与数据驱动依存关系分析实验","authors":"M. H. Khanam, Palli Suryachandra, K. Madhumurthy","doi":"10.1145/2345396.2345567","DOIUrl":null,"url":null,"abstract":"In this paper we present our experiments on Part-Of-Speech tagging and data driven dependency Parsing for Telugu language. We adopted three Part-Of-Speech taggers named as Brill tagger, Maximum Entropy tagger and Trigrams 'n' Tags tagger (TnT) to Telugu language and compares their performance. TnT tagger has showed better accuracy for Telugu. We used T'nT tagger for assigning the Part- Of-Speech tags and chunks for developing the annotated data for Dependency parsing. Telugu Language is morphologically rich free-word order language. We did experiments on two data-driven parsers Malt and MST for Telugu language and compare results of both the parsers. We describe the data and parser settings used in detail. We are also presented, which parser gives best results for different sentence types in Telugu.","PeriodicalId":290400,"journal":{"name":"International Conference on Advances in Computing, Communications and Informatics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experiments on POS tagging and data driven dependency parsing for Telugu language\",\"authors\":\"M. H. Khanam, Palli Suryachandra, K. Madhumurthy\",\"doi\":\"10.1145/2345396.2345567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present our experiments on Part-Of-Speech tagging and data driven dependency Parsing for Telugu language. We adopted three Part-Of-Speech taggers named as Brill tagger, Maximum Entropy tagger and Trigrams 'n' Tags tagger (TnT) to Telugu language and compares their performance. TnT tagger has showed better accuracy for Telugu. We used T'nT tagger for assigning the Part- Of-Speech tags and chunks for developing the annotated data for Dependency parsing. Telugu Language is morphologically rich free-word order language. We did experiments on two data-driven parsers Malt and MST for Telugu language and compare results of both the parsers. We describe the data and parser settings used in detail. We are also presented, which parser gives best results for different sentence types in Telugu.\",\"PeriodicalId\":290400,\"journal\":{\"name\":\"International Conference on Advances in Computing, Communications and Informatics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advances in Computing, Communications and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2345396.2345567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing, Communications and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2345396.2345567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了我们在泰卢固语词性标注和数据驱动依存句法分析方面的实验。采用Brill标注器、Maximum Entropy标注器和Trigrams 'n' Tags标注器(TnT)三种词性标注器对泰卢固语进行标注,并对其性能进行比较。TnT标签对泰卢固语的准确率更高。我们使用nt标记器来分配词性标记和块,用于开发用于依赖性分析的注释数据。泰卢固语是一种形态丰富的自由词序语言。我们对两种数据驱动的泰卢固语解析器Malt和MST进行了实验,并比较了两种解析器的结果。我们将详细描述所使用的数据和解析器设置。我们还介绍了哪种解析器对泰卢固语不同的句子类型给出了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiments on POS tagging and data driven dependency parsing for Telugu language
In this paper we present our experiments on Part-Of-Speech tagging and data driven dependency Parsing for Telugu language. We adopted three Part-Of-Speech taggers named as Brill tagger, Maximum Entropy tagger and Trigrams 'n' Tags tagger (TnT) to Telugu language and compares their performance. TnT tagger has showed better accuracy for Telugu. We used T'nT tagger for assigning the Part- Of-Speech tags and chunks for developing the annotated data for Dependency parsing. Telugu Language is morphologically rich free-word order language. We did experiments on two data-driven parsers Malt and MST for Telugu language and compare results of both the parsers. We describe the data and parser settings used in detail. We are also presented, which parser gives best results for different sentence types in Telugu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信