城市范围交通信号数据集的可扩展数据分析和可视化系统

D. Mahajan, Yashaswi Karnati, Tania Banerjee-Mishra, Varun Reddy Regalla, Rohith R. K. Reddy, A. Rangarajan, S. Ranka
{"title":"城市范围交通信号数据集的可扩展数据分析和可视化系统","authors":"D. Mahajan, Yashaswi Karnati, Tania Banerjee-Mishra, Varun Reddy Regalla, Rohith R. K. Reddy, A. Rangarajan, S. Ranka","doi":"10.1109/ITSC45102.2020.9294738","DOIUrl":null,"url":null,"abstract":"The advent of new traffic data collection tools such as high-resolution signalized intersection controller logs opens up a new space of possibilities for traffic management. In this work, we describe the high resolution datasets, apply appropriate machine learning methods to obtain relevant information from the said datasets and develop visualization tools to provide traffic engineers with suitable interfaces, thereby enabling new insights into traffic signal performance management. The eventual goal of this study is to enable automated analysis and help create operational performance measures for signalized intersections while aiding traffic administrators in their quest to design 21st century signal policies.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable Data Analytics and Visualization System for City-wide Traffic Signal Data-sets\",\"authors\":\"D. Mahajan, Yashaswi Karnati, Tania Banerjee-Mishra, Varun Reddy Regalla, Rohith R. K. Reddy, A. Rangarajan, S. Ranka\",\"doi\":\"10.1109/ITSC45102.2020.9294738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of new traffic data collection tools such as high-resolution signalized intersection controller logs opens up a new space of possibilities for traffic management. In this work, we describe the high resolution datasets, apply appropriate machine learning methods to obtain relevant information from the said datasets and develop visualization tools to provide traffic engineers with suitable interfaces, thereby enabling new insights into traffic signal performance management. The eventual goal of this study is to enable automated analysis and help create operational performance measures for signalized intersections while aiding traffic administrators in their quest to design 21st century signal policies.\",\"PeriodicalId\":394538,\"journal\":{\"name\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC45102.2020.9294738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新的交通数据收集工具的出现,如高分辨率信号交叉口控制器日志,为交通管理开辟了一个新的可能性空间。在这项工作中,我们描述了高分辨率数据集,应用适当的机器学习方法从所述数据集中获取相关信息,并开发可视化工具,为交通工程师提供合适的接口,从而使交通信号性能管理有了新的见解。本研究的最终目标是实现自动分析,并帮助创建信号交叉口的操作性能指标,同时帮助交通管理员设计21世纪的信号政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scalable Data Analytics and Visualization System for City-wide Traffic Signal Data-sets
The advent of new traffic data collection tools such as high-resolution signalized intersection controller logs opens up a new space of possibilities for traffic management. In this work, we describe the high resolution datasets, apply appropriate machine learning methods to obtain relevant information from the said datasets and develop visualization tools to provide traffic engineers with suitable interfaces, thereby enabling new insights into traffic signal performance management. The eventual goal of this study is to enable automated analysis and help create operational performance measures for signalized intersections while aiding traffic administrators in their quest to design 21st century signal policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信