神经网络与DCN:基于深度学习的流量驱动拓扑自适应

Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen, Jun Zhu
{"title":"神经网络与DCN:基于深度学习的流量驱动拓扑自适应","authors":"Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen, Jun Zhu","doi":"10.1145/3219617.3219656","DOIUrl":null,"url":null,"abstract":"The emerging optical/wireless topology reconfiguration technologies have shown great potential in improving the performance of data center networks. However, it also poses a big challenge on how to find the best topology configurations to support the dynamic traffic demands. In this work, we present xWeaver, a traffic-driven deep learning solution to infer the high-performance network topology online. xWeaver supports a powerful network model that enables the topology optimization over different performance metrics and network architectures. With the design of properly-structured neural networks, it can automatically derive the critical traffic patterns from data traces and learn the underlying mapping between the traffic patterns and topology configurations specific to the target data center. After offline training, xWeaver generates the optimized (or near-optimal) topology configuration online, and can also smoothly update its model parameters for new traffic patterns. The experiment results show the significant performance gain of xWeaver in supporting smaller flow completion time.","PeriodicalId":210440,"journal":{"name":"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Neural Network Meets DCN: Traffic-driven Topology Adaptation with Deep Learning\",\"authors\":\"Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen, Jun Zhu\",\"doi\":\"10.1145/3219617.3219656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging optical/wireless topology reconfiguration technologies have shown great potential in improving the performance of data center networks. However, it also poses a big challenge on how to find the best topology configurations to support the dynamic traffic demands. In this work, we present xWeaver, a traffic-driven deep learning solution to infer the high-performance network topology online. xWeaver supports a powerful network model that enables the topology optimization over different performance metrics and network architectures. With the design of properly-structured neural networks, it can automatically derive the critical traffic patterns from data traces and learn the underlying mapping between the traffic patterns and topology configurations specific to the target data center. After offline training, xWeaver generates the optimized (or near-optimal) topology configuration online, and can also smoothly update its model parameters for new traffic patterns. The experiment results show the significant performance gain of xWeaver in supporting smaller flow completion time.\",\"PeriodicalId\":210440,\"journal\":{\"name\":\"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3219617.3219656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219617.3219656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

新兴的光/无线拓扑重构技术在提高数据中心网络性能方面显示出巨大的潜力。然而,如何找到支持动态流量需求的最佳拓扑配置也提出了很大的挑战。在这项工作中,我们提出了xWeaver,一个流量驱动的深度学习解决方案,用于在线推断高性能网络拓扑。xWeaver支持强大的网络模型,该模型支持在不同的性能指标和网络架构上进行拓扑优化。通过设计结构合理的神经网络,可以从数据轨迹中自动导出关键流量模式,并学习目标数据中心特定的流量模式与拓扑配置之间的底层映射关系。经过离线训练后,xWeaver在线生成优化的(或接近最优的)拓扑配置,并且还可以为新的流量模式平滑地更新其模型参数。实验结果表明,xWeaver在支持更短的流程完成时间方面具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Meets DCN: Traffic-driven Topology Adaptation with Deep Learning
The emerging optical/wireless topology reconfiguration technologies have shown great potential in improving the performance of data center networks. However, it also poses a big challenge on how to find the best topology configurations to support the dynamic traffic demands. In this work, we present xWeaver, a traffic-driven deep learning solution to infer the high-performance network topology online. xWeaver supports a powerful network model that enables the topology optimization over different performance metrics and network architectures. With the design of properly-structured neural networks, it can automatically derive the critical traffic patterns from data traces and learn the underlying mapping between the traffic patterns and topology configurations specific to the target data center. After offline training, xWeaver generates the optimized (or near-optimal) topology configuration online, and can also smoothly update its model parameters for new traffic patterns. The experiment results show the significant performance gain of xWeaver in supporting smaller flow completion time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信