基于深度学习的印刷电路板布局验证x射线CT切片分析

Deruo Cheng, Yiqiong Shi, Yee-Yang Tee, Jingsi Song, Xue Wang, B. Wen, B. Gwee
{"title":"基于深度学习的印刷电路板布局验证x射线CT切片分析","authors":"Deruo Cheng, Yiqiong Shi, Yee-Yang Tee, Jingsi Song, Xue Wang, B. Wen, B. Gwee","doi":"10.1109/AICAS57966.2023.10168608","DOIUrl":null,"url":null,"abstract":"3D X-ray Computational Tomography (CT) systems have been employed to inspect Printed Circuit Boards (PCB) for security analysis, considering the heightened trustworthiness concern on the globalized supply chain. In this paper, we propose a deep-learning-based layout verification (DELVer) framework to automatically extract PCB layout information from X-ray CT slices and verify against the design files. Leveraging on geometrical projective transformation, our proposed DELVer framework aligns the acquired CT slice of each PCB layer with their corresponding design file, to train state-of-the-art deep learning models for layout extraction and verification. It thus alleviates the laborious manual data labeling for deep learning models. With a cross-device evaluation on 4 multi-layer satellite PCBs of board size around 90 cm2, our proposed DELVer framework demonstrates how deep learning models can generalize to unseen target PCBs for layout verification, establishing an efficient solution for PCB assurance and industrial failure analysis.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep-learning-based X-ray CT Slice Analysis for Layout Verification in Printed Circuit Boards\",\"authors\":\"Deruo Cheng, Yiqiong Shi, Yee-Yang Tee, Jingsi Song, Xue Wang, B. Wen, B. Gwee\",\"doi\":\"10.1109/AICAS57966.2023.10168608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D X-ray Computational Tomography (CT) systems have been employed to inspect Printed Circuit Boards (PCB) for security analysis, considering the heightened trustworthiness concern on the globalized supply chain. In this paper, we propose a deep-learning-based layout verification (DELVer) framework to automatically extract PCB layout information from X-ray CT slices and verify against the design files. Leveraging on geometrical projective transformation, our proposed DELVer framework aligns the acquired CT slice of each PCB layer with their corresponding design file, to train state-of-the-art deep learning models for layout extraction and verification. It thus alleviates the laborious manual data labeling for deep learning models. With a cross-device evaluation on 4 multi-layer satellite PCBs of board size around 90 cm2, our proposed DELVer framework demonstrates how deep learning models can generalize to unseen target PCBs for layout verification, establishing an efficient solution for PCB assurance and industrial failure analysis.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维x射线计算机断层扫描(CT)系统已被用于检查印刷电路板(PCB)进行安全分析,考虑到全球化供应链的可信度问题。在本文中,我们提出了一种基于深度学习的布局验证(DELVer)框架,用于自动从x射线CT切片中提取PCB布局信息并根据设计文件进行验证。利用几何投影变换,我们提出的DELVer框架将获得的每个PCB层的CT切片与其相应的设计文件对齐,以训练最先进的深度学习模型进行布局提取和验证。从而减轻了深度学习模型手工标注数据的费力程度。通过对4块电路板尺寸约为90 cm2的多层卫星PCB的跨设备评估,我们提出的DELVer框架展示了深度学习模型如何推广到未知的目标PCB进行布局验证,为PCB保证和工业失效分析建立了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-learning-based X-ray CT Slice Analysis for Layout Verification in Printed Circuit Boards
3D X-ray Computational Tomography (CT) systems have been employed to inspect Printed Circuit Boards (PCB) for security analysis, considering the heightened trustworthiness concern on the globalized supply chain. In this paper, we propose a deep-learning-based layout verification (DELVer) framework to automatically extract PCB layout information from X-ray CT slices and verify against the design files. Leveraging on geometrical projective transformation, our proposed DELVer framework aligns the acquired CT slice of each PCB layer with their corresponding design file, to train state-of-the-art deep learning models for layout extraction and verification. It thus alleviates the laborious manual data labeling for deep learning models. With a cross-device evaluation on 4 multi-layer satellite PCBs of board size around 90 cm2, our proposed DELVer framework demonstrates how deep learning models can generalize to unseen target PCBs for layout verification, establishing an efficient solution for PCB assurance and industrial failure analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信