Quoc Huy Do, Hossein Tehrani Niknejad, Keisuke Yoneda, Ryohei Sakai, S. Mita
{"title":"使用拉格朗日乘法器进行安全裕度最大化的车辆路径规划","authors":"Quoc Huy Do, Hossein Tehrani Niknejad, Keisuke Yoneda, Ryohei Sakai, S. Mita","doi":"10.1109/IVS.2013.6629466","DOIUrl":null,"url":null,"abstract":"We propose a path planning method for autonomous vehicle in cluttered environment with narrow passages. Different from traditional methods, we use a learning approach based on RBF kernel SVM to maximize the safety margin for driving. We use the Lagrange multipliers of SVM dual model to find most critical points in map and generate optimized hyperplane for path. The method is implemented on autonomous vehicle for outdoor parking and compared to well-known method in autonomous vehicle literatures. The experiments prove that the method is able to generate smooth and safe path in shorter time compared to other methods.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Vehicle path planning with maximizing safe margin for driving using Lagrange multipliers\",\"authors\":\"Quoc Huy Do, Hossein Tehrani Niknejad, Keisuke Yoneda, Ryohei Sakai, S. Mita\",\"doi\":\"10.1109/IVS.2013.6629466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a path planning method for autonomous vehicle in cluttered environment with narrow passages. Different from traditional methods, we use a learning approach based on RBF kernel SVM to maximize the safety margin for driving. We use the Lagrange multipliers of SVM dual model to find most critical points in map and generate optimized hyperplane for path. The method is implemented on autonomous vehicle for outdoor parking and compared to well-known method in autonomous vehicle literatures. The experiments prove that the method is able to generate smooth and safe path in shorter time compared to other methods.\",\"PeriodicalId\":251198,\"journal\":{\"name\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2013.6629466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vehicle path planning with maximizing safe margin for driving using Lagrange multipliers
We propose a path planning method for autonomous vehicle in cluttered environment with narrow passages. Different from traditional methods, we use a learning approach based on RBF kernel SVM to maximize the safety margin for driving. We use the Lagrange multipliers of SVM dual model to find most critical points in map and generate optimized hyperplane for path. The method is implemented on autonomous vehicle for outdoor parking and compared to well-known method in autonomous vehicle literatures. The experiments prove that the method is able to generate smooth and safe path in shorter time compared to other methods.