Jonathan Perales-Manrique, Jorge Molina-Chirinos, P. Shiguihara-Juárez
{"title":"金融行业公司的数据分析成熟度模型","authors":"Jonathan Perales-Manrique, Jorge Molina-Chirinos, P. Shiguihara-Juárez","doi":"10.1109/SHIRCON48091.2019.9024885","DOIUrl":null,"url":null,"abstract":"Data analytics allows organizations in the financial sector to gain a competitive advantage through processes aimed at obtaining data, processing them and displaying them as valuable information to understand the behavior of their clients and to be prepared against risks as money laundering, credit fraud, among others. However, organizations cannot easily identify gaps related to personnel, information systems and business processes that hinder the improvement of their data analytics environment. In this context, maturity models evaluate, based on defined criteria, the current state of an organization and identify its maturity level in order to improve based on the findings. In this paper, a maturity model is proposed to identify gaps in analytics environment of financial companies that lead to the reduction of these. This model includes artifacts and evaluation criteria focused on technology, governance, data management, culture and analytics itself, which gives a broader and structured diagnosis process with respect to the analytics environment. The proposed model was tested in three companies of Peruvian financial sector and the results suggest that the specialists obtained a clearer perspective than their initial thoughts on the situation of the analytics environment of their companies.","PeriodicalId":113450,"journal":{"name":"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Data Analytics Maturity Model for Financial Sector Companies\",\"authors\":\"Jonathan Perales-Manrique, Jorge Molina-Chirinos, P. Shiguihara-Juárez\",\"doi\":\"10.1109/SHIRCON48091.2019.9024885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analytics allows organizations in the financial sector to gain a competitive advantage through processes aimed at obtaining data, processing them and displaying them as valuable information to understand the behavior of their clients and to be prepared against risks as money laundering, credit fraud, among others. However, organizations cannot easily identify gaps related to personnel, information systems and business processes that hinder the improvement of their data analytics environment. In this context, maturity models evaluate, based on defined criteria, the current state of an organization and identify its maturity level in order to improve based on the findings. In this paper, a maturity model is proposed to identify gaps in analytics environment of financial companies that lead to the reduction of these. This model includes artifacts and evaluation criteria focused on technology, governance, data management, culture and analytics itself, which gives a broader and structured diagnosis process with respect to the analytics environment. The proposed model was tested in three companies of Peruvian financial sector and the results suggest that the specialists obtained a clearer perspective than their initial thoughts on the situation of the analytics environment of their companies.\",\"PeriodicalId\":113450,\"journal\":{\"name\":\"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHIRCON48091.2019.9024885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Sciences and Humanities International Research Conference (SHIRCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHIRCON48091.2019.9024885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Data Analytics Maturity Model for Financial Sector Companies
Data analytics allows organizations in the financial sector to gain a competitive advantage through processes aimed at obtaining data, processing them and displaying them as valuable information to understand the behavior of their clients and to be prepared against risks as money laundering, credit fraud, among others. However, organizations cannot easily identify gaps related to personnel, information systems and business processes that hinder the improvement of their data analytics environment. In this context, maturity models evaluate, based on defined criteria, the current state of an organization and identify its maturity level in order to improve based on the findings. In this paper, a maturity model is proposed to identify gaps in analytics environment of financial companies that lead to the reduction of these. This model includes artifacts and evaluation criteria focused on technology, governance, data management, culture and analytics itself, which gives a broader and structured diagnosis process with respect to the analytics environment. The proposed model was tested in three companies of Peruvian financial sector and the results suggest that the specialists obtained a clearer perspective than their initial thoughts on the situation of the analytics environment of their companies.