相关逻辑中的各种民主否定

G. Robles, J. Méndez
{"title":"相关逻辑中的各种民主否定","authors":"G. Robles, J. Méndez","doi":"10.26686/ajl.v20i2.8311","DOIUrl":null,"url":null,"abstract":"The present paper is inspired by Sylvan and Plumwood’s logicBM defined in “Non-normal relevant logics” and by their treatmentof negation with the ∗-operator in “The semantics of first-degree en-tailment”. Given a positive logic L including Routley and Meyer’sbasic positive logic and included in either the positive fragment of Eor in that of RW, we investigate the essential De Morgan negation ex-pansions of L and determine all the deductive relations they maintainto each other. A Routley-Meyer semantics is provided for each logicdefined in the paper.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Variety of DeMorgan Negations in Relevant Logics\",\"authors\":\"G. Robles, J. Méndez\",\"doi\":\"10.26686/ajl.v20i2.8311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is inspired by Sylvan and Plumwood’s logicBM defined in “Non-normal relevant logics” and by their treatmentof negation with the ∗-operator in “The semantics of first-degree en-tailment”. Given a positive logic L including Routley and Meyer’sbasic positive logic and included in either the positive fragment of Eor in that of RW, we investigate the essential De Morgan negation ex-pansions of L and determine all the deductive relations they maintainto each other. A Routley-Meyer semantics is provided for each logicdefined in the paper.\",\"PeriodicalId\":367849,\"journal\":{\"name\":\"The Australasian Journal of Logic\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Australasian Journal of Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26686/ajl.v20i2.8311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v20i2.8311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的灵感来自Sylvan和Plumwood在“非正规相关逻辑”中定义的logicBM,以及他们在“一级蕴涵的语义”中用* -算子处理否定。给定一个包含Routley和Meyer的基本正逻辑的正逻辑L,并将其包含在Eor的正片段中或包含在RW的正片段中,我们研究了L的基本De Morgan否定展开,并确定了它们之间保持的所有演绎关系。为文中定义的每个逻辑提供了一个Routley-Meyer语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Variety of DeMorgan Negations in Relevant Logics
The present paper is inspired by Sylvan and Plumwood’s logicBM defined in “Non-normal relevant logics” and by their treatmentof negation with the ∗-operator in “The semantics of first-degree en-tailment”. Given a positive logic L including Routley and Meyer’sbasic positive logic and included in either the positive fragment of Eor in that of RW, we investigate the essential De Morgan negation ex-pansions of L and determine all the deductive relations they maintainto each other. A Routley-Meyer semantics is provided for each logicdefined in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信