Syed M. A. H. Jafri, Muhammad Adeel Tajammul, A. Hemani, K. Paul, J. Plosila, H. Tenhunen
{"title":"CGRAs中高效动态电压和频率缩放的能量感知任务并行性","authors":"Syed M. A. H. Jafri, Muhammad Adeel Tajammul, A. Hemani, K. Paul, J. Plosila, H. Tenhunen","doi":"10.1109/SAMOS.2013.6621112","DOIUrl":null,"url":null,"abstract":"Today, coarse grained reconfigurable architectures (CGRAs) host multiple applications, with arbitrary communication and computation patterns. Each application itself is composed of multiple tasks, spatially mapped to different parts of platform. Providing worst-case operating point to all applications leads to excessive energy and power consumption. To cater this problem, dynamic voltage and frequency scaling (DVFS) is a frequently used technique. DVFS allows to scale the voltage and/or frequency of the device, based on runtime constraints. Recent research suggests that the efficiency of DVFS can be significantly enhanced by combining dynamic parallelism with DVFS. The proposed methods exploit the speedup induced by parallelism to allow aggressive frequency and voltage scaling. These techniques, employ greedy algorithm, that blindly parallelizes a task whenever required resources are available. Therefore, it is likely to parallelize a task(s) even if it offers no speedup to the application, thereby undermining the effectiveness of parallelism. As a solution to this problem, we present energy aware task parallelism. Our solution relies on a resource allocation graphs and an autonomous parallelism, voltage, and frequency selection algorithm. Using resource allocation graph, as a guide, the autonomous parallelism, voltage, and frequency selection algorithm parallelizes a task only if its parallel version reduces overall application execution time. Simulation results, using representative applications (MPEG4, WLAN), show that our solution promises better resource utilization, compared to greedy algorithm. Synthesis results (using WLAN) confirm a significant reduction in energy (up to 36%), power (up to 28%), and configuration memory requirements (up to 36%), compared to state of the art.","PeriodicalId":382307,"journal":{"name":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Energy-aware-task-parallelism for efficient dynamic voltage, and frequency scaling, in CGRAs\",\"authors\":\"Syed M. A. H. Jafri, Muhammad Adeel Tajammul, A. Hemani, K. Paul, J. Plosila, H. Tenhunen\",\"doi\":\"10.1109/SAMOS.2013.6621112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, coarse grained reconfigurable architectures (CGRAs) host multiple applications, with arbitrary communication and computation patterns. Each application itself is composed of multiple tasks, spatially mapped to different parts of platform. Providing worst-case operating point to all applications leads to excessive energy and power consumption. To cater this problem, dynamic voltage and frequency scaling (DVFS) is a frequently used technique. DVFS allows to scale the voltage and/or frequency of the device, based on runtime constraints. Recent research suggests that the efficiency of DVFS can be significantly enhanced by combining dynamic parallelism with DVFS. The proposed methods exploit the speedup induced by parallelism to allow aggressive frequency and voltage scaling. These techniques, employ greedy algorithm, that blindly parallelizes a task whenever required resources are available. Therefore, it is likely to parallelize a task(s) even if it offers no speedup to the application, thereby undermining the effectiveness of parallelism. As a solution to this problem, we present energy aware task parallelism. Our solution relies on a resource allocation graphs and an autonomous parallelism, voltage, and frequency selection algorithm. Using resource allocation graph, as a guide, the autonomous parallelism, voltage, and frequency selection algorithm parallelizes a task only if its parallel version reduces overall application execution time. Simulation results, using representative applications (MPEG4, WLAN), show that our solution promises better resource utilization, compared to greedy algorithm. Synthesis results (using WLAN) confirm a significant reduction in energy (up to 36%), power (up to 28%), and configuration memory requirements (up to 36%), compared to state of the art.\",\"PeriodicalId\":382307,\"journal\":{\"name\":\"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2013.6621112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2013.6621112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-aware-task-parallelism for efficient dynamic voltage, and frequency scaling, in CGRAs
Today, coarse grained reconfigurable architectures (CGRAs) host multiple applications, with arbitrary communication and computation patterns. Each application itself is composed of multiple tasks, spatially mapped to different parts of platform. Providing worst-case operating point to all applications leads to excessive energy and power consumption. To cater this problem, dynamic voltage and frequency scaling (DVFS) is a frequently used technique. DVFS allows to scale the voltage and/or frequency of the device, based on runtime constraints. Recent research suggests that the efficiency of DVFS can be significantly enhanced by combining dynamic parallelism with DVFS. The proposed methods exploit the speedup induced by parallelism to allow aggressive frequency and voltage scaling. These techniques, employ greedy algorithm, that blindly parallelizes a task whenever required resources are available. Therefore, it is likely to parallelize a task(s) even if it offers no speedup to the application, thereby undermining the effectiveness of parallelism. As a solution to this problem, we present energy aware task parallelism. Our solution relies on a resource allocation graphs and an autonomous parallelism, voltage, and frequency selection algorithm. Using resource allocation graph, as a guide, the autonomous parallelism, voltage, and frequency selection algorithm parallelizes a task only if its parallel version reduces overall application execution time. Simulation results, using representative applications (MPEG4, WLAN), show that our solution promises better resource utilization, compared to greedy algorithm. Synthesis results (using WLAN) confirm a significant reduction in energy (up to 36%), power (up to 28%), and configuration memory requirements (up to 36%), compared to state of the art.