向量

José María Martínez Mediano, Tema
{"title":"向量","authors":"José María Martínez Mediano, Tema","doi":"10.2307/j.ctv287sbks.6","DOIUrl":null,"url":null,"abstract":"1. Para a  = (1, −2, 3) y b  = (3, −1, 4), halla: a) b a   + b) b a   − 2 c) b a   3 + − d) b a c     +  = Solución: a) b a   + = (1, −2, 3) + (3, −1, 4) = (4, –3, 7). b) b a   − 2 = 2 · (1, −2, 3) – (3, −1, 4) = (2 – 3, –4 + 1, 6 – 4) = (–1, –3, 2). c) b a   3 + − = – (1, −2, 3) + 3 · (3, −1, 4) = (–1 + 9, 2 – 3, –3 + 12) = (8, –1, 9). d) b a c     +  = = ( ) ( ) ( )  +   −  −  +  = −  + −  4 3 , 2 , 3 4 , 1 , 3 3 , 2 , 1 .","PeriodicalId":409897,"journal":{"name":"Introducción a la proporción y a los vectores","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vectores\",\"authors\":\"José María Martínez Mediano, Tema\",\"doi\":\"10.2307/j.ctv287sbks.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. Para a  = (1, −2, 3) y b  = (3, −1, 4), halla: a) b a   + b) b a   − 2 c) b a   3 + − d) b a c     +  = Solución: a) b a   + = (1, −2, 3) + (3, −1, 4) = (4, –3, 7). b) b a   − 2 = 2 · (1, −2, 3) – (3, −1, 4) = (2 – 3, –4 + 1, 6 – 4) = (–1, –3, 2). c) b a   3 + − = – (1, −2, 3) + 3 · (3, −1, 4) = (–1 + 9, 2 – 3, –3 + 12) = (8, –1, 9). d) b a c     +  = = ( ) ( ) ( )  +   −  −  +  = −  + −  4 3 , 2 , 3 4 , 1 , 3 3 , 2 , 1 .\",\"PeriodicalId\":409897,\"journal\":{\"name\":\"Introducción a la proporción y a los vectores\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introducción a la proporción y a los vectores\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv287sbks.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introducción a la proporción y a los vectores","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv287sbks.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vectores
1. Para a  = (1, −2, 3) y b  = (3, −1, 4), halla: a) b a   + b) b a   − 2 c) b a   3 + − d) b a c     +  = Solución: a) b a   + = (1, −2, 3) + (3, −1, 4) = (4, –3, 7). b) b a   − 2 = 2 · (1, −2, 3) – (3, −1, 4) = (2 – 3, –4 + 1, 6 – 4) = (–1, –3, 2). c) b a   3 + − = – (1, −2, 3) + 3 · (3, −1, 4) = (–1 + 9, 2 – 3, –3 + 12) = (8, –1, 9). d) b a c     +  = = ( ) ( ) ( )  +   −  −  +  = −  + −  4 3 , 2 , 3 4 , 1 , 3 3 , 2 , 1 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信